Mercurial > hg > octave-lojdl > gnulib-hg
view lib/fatal-signal.c @ 14641:9a3f3761a941
getcwd: fix mingw bugs
On mingw, getcwd(NULL,1) succeeds, even though glibc documents that
with a non-zero size, the allocation will not exceed that many bytes.
On mingw, getcwd has the wrong signature. However, we don't have
to check for this if anything else triggers the replacement.
Also, fix a type bug that crept into the original getcwd-lgpl commit.
* m4/getcwd.m4 (gl_FUNC_GETCWD_NULL): Detect one mingw bug.
* doc/posix-functions/getcwd.texi (getcwd): Document the problems.
* lib/getcwd-lgpl.c (rpl_getcwd): Fix return type.
Signed-off-by: Eric Blake <eblake@redhat.com>
author | Eric Blake <eblake@redhat.com> |
---|---|
date | Wed, 27 Apr 2011 20:40:21 -0600 |
parents | 97fc9a21a8fb |
children | 8250f2777afc |
line wrap: on
line source
/* Emergency actions in case of a fatal signal. Copyright (C) 2003-2004, 2006-2011 Free Software Foundation, Inc. Written by Bruno Haible <bruno@clisp.org>, 2003. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <config.h> /* Specification. */ #include "fatal-signal.h" #include <stdbool.h> #include <stdlib.h> #include <signal.h> #include <unistd.h> #include "sig-handler.h" #include "xalloc.h" #define SIZEOF(a) (sizeof(a) / sizeof(a[0])) /* ========================================================================= */ /* The list of fatal signals. These are those signals whose default action is to terminate the process without a core dump, except SIGKILL - because it cannot be caught, SIGALRM SIGUSR1 SIGUSR2 SIGPOLL SIGIO SIGLOST - because applications often use them for their own purpose, SIGPROF SIGVTALRM - because they are used for profiling, SIGSTKFLT - because it is more similar to SIGFPE, SIGSEGV, SIGBUS, SIGSYS - because it is more similar to SIGABRT, SIGSEGV, SIGPWR - because it of too special use, SIGRTMIN...SIGRTMAX - because they are reserved for application use. plus SIGXCPU, SIGXFSZ - because they are quite similar to SIGTERM. */ static int fatal_signals[] = { /* ISO C 99 signals. */ #ifdef SIGINT SIGINT, #endif #ifdef SIGTERM SIGTERM, #endif /* POSIX:2001 signals. */ #ifdef SIGHUP SIGHUP, #endif #ifdef SIGPIPE SIGPIPE, #endif /* BSD signals. */ #ifdef SIGXCPU SIGXCPU, #endif #ifdef SIGXFSZ SIGXFSZ, #endif /* Woe32 signals. */ #ifdef SIGBREAK SIGBREAK, #endif 0 }; #define num_fatal_signals (SIZEOF (fatal_signals) - 1) /* Eliminate signals whose signal handler is SIG_IGN. */ static void init_fatal_signals (void) { static bool fatal_signals_initialized = false; if (!fatal_signals_initialized) { size_t i; for (i = 0; i < num_fatal_signals; i++) { struct sigaction action; if (sigaction (fatal_signals[i], NULL, &action) >= 0 && get_handler (&action) == SIG_IGN) fatal_signals[i] = -1; } fatal_signals_initialized = true; } } /* ========================================================================= */ typedef void (*action_t) (void); /* Type of an entry in the actions array. The 'action' field is accessed from within the fatal_signal_handler(), therefore we mark it as 'volatile'. */ typedef struct { volatile action_t action; } actions_entry_t; /* The registered cleanup actions. */ static actions_entry_t static_actions[32]; static actions_entry_t * volatile actions = static_actions; static sig_atomic_t volatile actions_count = 0; static size_t actions_allocated = SIZEOF (static_actions); /* The saved signal handlers. Size 32 would not be sufficient: On HP-UX, SIGXCPU = 33, SIGXFSZ = 34. */ static struct sigaction saved_sigactions[64]; /* Uninstall the handlers. */ static inline void uninstall_handlers () { size_t i; for (i = 0; i < num_fatal_signals; i++) if (fatal_signals[i] >= 0) { int sig = fatal_signals[i]; if (saved_sigactions[sig].sa_handler == SIG_IGN) saved_sigactions[sig].sa_handler = SIG_DFL; sigaction (sig, &saved_sigactions[sig], NULL); } } /* The signal handler. It gets called asynchronously. */ static void fatal_signal_handler (int sig) { for (;;) { /* Get the last registered cleanup action, in a reentrant way. */ action_t action; size_t n = actions_count; if (n == 0) break; n--; actions_count = n; action = actions[n].action; /* Execute the action. */ action (); } /* Now execute the signal's default action. If the signal being delivered was blocked, the re-raised signal would be delivered when this handler returns. But the way we install this handler, no signal is blocked, and the re-raised signal is delivered already during raise(). */ uninstall_handlers (); raise (sig); } /* Install the handlers. */ static inline void install_handlers () { size_t i; struct sigaction action; action.sa_handler = &fatal_signal_handler; /* If we get a fatal signal while executing fatal_signal_handler, enter fatal_signal_handler recursively, since it is reentrant. Hence no SA_RESETHAND. */ action.sa_flags = SA_NODEFER; sigemptyset (&action.sa_mask); for (i = 0; i < num_fatal_signals; i++) if (fatal_signals[i] >= 0) { int sig = fatal_signals[i]; if (!(sig < sizeof (saved_sigactions) / sizeof (saved_sigactions[0]))) abort (); sigaction (sig, &action, &saved_sigactions[sig]); } } /* Register a cleanup function to be executed when a catchable fatal signal occurs. */ void at_fatal_signal (action_t action) { static bool cleanup_initialized = false; if (!cleanup_initialized) { init_fatal_signals (); install_handlers (); cleanup_initialized = true; } if (actions_count == actions_allocated) { /* Extend the actions array. Note that we cannot use xrealloc(), because then the cleanup() function could access an already deallocated array. */ actions_entry_t *old_actions = actions; size_t old_actions_allocated = actions_allocated; size_t new_actions_allocated = 2 * actions_allocated; actions_entry_t *new_actions = XNMALLOC (new_actions_allocated, actions_entry_t); size_t k; /* Don't use memcpy() here, because memcpy takes non-volatile arguments and is therefore not guaranteed to complete all memory stores before the next statement. */ for (k = 0; k < old_actions_allocated; k++) new_actions[k] = old_actions[k]; actions = new_actions; actions_allocated = new_actions_allocated; /* Now we can free the old actions array. */ if (old_actions != static_actions) free (old_actions); } /* The two uses of 'volatile' in the types above (and ISO C 99 section 5.1.2.3.(5)) ensure that we increment the actions_count only after the new action has been written to the memory location actions[actions_count]. */ actions[actions_count].action = action; actions_count++; } /* ========================================================================= */ static sigset_t fatal_signal_set; static void init_fatal_signal_set () { static bool fatal_signal_set_initialized = false; if (!fatal_signal_set_initialized) { size_t i; init_fatal_signals (); sigemptyset (&fatal_signal_set); for (i = 0; i < num_fatal_signals; i++) if (fatal_signals[i] >= 0) sigaddset (&fatal_signal_set, fatal_signals[i]); fatal_signal_set_initialized = true; } } /* Temporarily delay the catchable fatal signals. */ void block_fatal_signals () { init_fatal_signal_set (); sigprocmask (SIG_BLOCK, &fatal_signal_set, NULL); } /* Stop delaying the catchable fatal signals. */ void unblock_fatal_signals () { init_fatal_signal_set (); sigprocmask (SIG_UNBLOCK, &fatal_signal_set, NULL); }