2329
|
1 SUBROUTINE ZGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) |
|
2 * |
7034
|
3 * -- LAPACK routine (version 3.1) -- |
|
4 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. |
|
5 * November 2006 |
2329
|
6 * |
|
7 * .. Scalar Arguments .. |
|
8 INTEGER INFO, LDA, LWORK, M, N |
|
9 * .. |
|
10 * .. Array Arguments .. |
3333
|
11 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) |
2329
|
12 * .. |
|
13 * |
|
14 * Purpose |
|
15 * ======= |
|
16 * |
|
17 * ZGELQF computes an LQ factorization of a complex M-by-N matrix A: |
|
18 * A = L * Q. |
|
19 * |
|
20 * Arguments |
|
21 * ========= |
|
22 * |
|
23 * M (input) INTEGER |
|
24 * The number of rows of the matrix A. M >= 0. |
|
25 * |
|
26 * N (input) INTEGER |
|
27 * The number of columns of the matrix A. N >= 0. |
|
28 * |
|
29 * A (input/output) COMPLEX*16 array, dimension (LDA,N) |
|
30 * On entry, the M-by-N matrix A. |
|
31 * On exit, the elements on and below the diagonal of the array |
|
32 * contain the m-by-min(m,n) lower trapezoidal matrix L (L is |
|
33 * lower triangular if m <= n); the elements above the diagonal, |
|
34 * with the array TAU, represent the unitary matrix Q as a |
|
35 * product of elementary reflectors (see Further Details). |
|
36 * |
|
37 * LDA (input) INTEGER |
|
38 * The leading dimension of the array A. LDA >= max(1,M). |
|
39 * |
|
40 * TAU (output) COMPLEX*16 array, dimension (min(M,N)) |
|
41 * The scalar factors of the elementary reflectors (see Further |
|
42 * Details). |
|
43 * |
7034
|
44 * WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) |
2329
|
45 * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. |
|
46 * |
|
47 * LWORK (input) INTEGER |
|
48 * The dimension of the array WORK. LWORK >= max(1,M). |
|
49 * For optimum performance LWORK >= M*NB, where NB is the |
|
50 * optimal blocksize. |
|
51 * |
3333
|
52 * If LWORK = -1, then a workspace query is assumed; the routine |
|
53 * only calculates the optimal size of the WORK array, returns |
|
54 * this value as the first entry of the WORK array, and no error |
|
55 * message related to LWORK is issued by XERBLA. |
|
56 * |
2329
|
57 * INFO (output) INTEGER |
|
58 * = 0: successful exit |
|
59 * < 0: if INFO = -i, the i-th argument had an illegal value |
|
60 * |
|
61 * Further Details |
|
62 * =============== |
|
63 * |
|
64 * The matrix Q is represented as a product of elementary reflectors |
|
65 * |
|
66 * Q = H(k)' . . . H(2)' H(1)', where k = min(m,n). |
|
67 * |
|
68 * Each H(i) has the form |
|
69 * |
|
70 * H(i) = I - tau * v * v' |
|
71 * |
|
72 * where tau is a complex scalar, and v is a complex vector with |
|
73 * v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in |
|
74 * A(i,i+1:n), and tau in TAU(i). |
|
75 * |
|
76 * ===================================================================== |
|
77 * |
|
78 * .. Local Scalars .. |
3333
|
79 LOGICAL LQUERY |
|
80 INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB, |
|
81 $ NBMIN, NX |
2329
|
82 * .. |
|
83 * .. External Subroutines .. |
|
84 EXTERNAL XERBLA, ZGELQ2, ZLARFB, ZLARFT |
|
85 * .. |
|
86 * .. Intrinsic Functions .. |
|
87 INTRINSIC MAX, MIN |
|
88 * .. |
|
89 * .. External Functions .. |
|
90 INTEGER ILAENV |
|
91 EXTERNAL ILAENV |
|
92 * .. |
|
93 * .. Executable Statements .. |
|
94 * |
|
95 * Test the input arguments |
|
96 * |
|
97 INFO = 0 |
3333
|
98 NB = ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 ) |
|
99 LWKOPT = M*NB |
|
100 WORK( 1 ) = LWKOPT |
|
101 LQUERY = ( LWORK.EQ.-1 ) |
2329
|
102 IF( M.LT.0 ) THEN |
|
103 INFO = -1 |
|
104 ELSE IF( N.LT.0 ) THEN |
|
105 INFO = -2 |
|
106 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN |
|
107 INFO = -4 |
3333
|
108 ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN |
2329
|
109 INFO = -7 |
|
110 END IF |
|
111 IF( INFO.NE.0 ) THEN |
|
112 CALL XERBLA( 'ZGELQF', -INFO ) |
|
113 RETURN |
3333
|
114 ELSE IF( LQUERY ) THEN |
|
115 RETURN |
2329
|
116 END IF |
|
117 * |
|
118 * Quick return if possible |
|
119 * |
|
120 K = MIN( M, N ) |
|
121 IF( K.EQ.0 ) THEN |
|
122 WORK( 1 ) = 1 |
|
123 RETURN |
|
124 END IF |
|
125 * |
|
126 NBMIN = 2 |
|
127 NX = 0 |
|
128 IWS = M |
|
129 IF( NB.GT.1 .AND. NB.LT.K ) THEN |
|
130 * |
|
131 * Determine when to cross over from blocked to unblocked code. |
|
132 * |
|
133 NX = MAX( 0, ILAENV( 3, 'ZGELQF', ' ', M, N, -1, -1 ) ) |
|
134 IF( NX.LT.K ) THEN |
|
135 * |
|
136 * Determine if workspace is large enough for blocked code. |
|
137 * |
|
138 LDWORK = M |
|
139 IWS = LDWORK*NB |
|
140 IF( LWORK.LT.IWS ) THEN |
|
141 * |
|
142 * Not enough workspace to use optimal NB: reduce NB and |
|
143 * determine the minimum value of NB. |
|
144 * |
|
145 NB = LWORK / LDWORK |
|
146 NBMIN = MAX( 2, ILAENV( 2, 'ZGELQF', ' ', M, N, -1, |
|
147 $ -1 ) ) |
|
148 END IF |
|
149 END IF |
|
150 END IF |
|
151 * |
|
152 IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN |
|
153 * |
|
154 * Use blocked code initially |
|
155 * |
|
156 DO 10 I = 1, K - NX, NB |
|
157 IB = MIN( K-I+1, NB ) |
|
158 * |
|
159 * Compute the LQ factorization of the current block |
|
160 * A(i:i+ib-1,i:n) |
|
161 * |
|
162 CALL ZGELQ2( IB, N-I+1, A( I, I ), LDA, TAU( I ), WORK, |
|
163 $ IINFO ) |
|
164 IF( I+IB.LE.M ) THEN |
|
165 * |
|
166 * Form the triangular factor of the block reflector |
|
167 * H = H(i) H(i+1) . . . H(i+ib-1) |
|
168 * |
|
169 CALL ZLARFT( 'Forward', 'Rowwise', N-I+1, IB, A( I, I ), |
|
170 $ LDA, TAU( I ), WORK, LDWORK ) |
|
171 * |
|
172 * Apply H to A(i+ib:m,i:n) from the right |
|
173 * |
|
174 CALL ZLARFB( 'Right', 'No transpose', 'Forward', |
|
175 $ 'Rowwise', M-I-IB+1, N-I+1, IB, A( I, I ), |
|
176 $ LDA, WORK, LDWORK, A( I+IB, I ), LDA, |
|
177 $ WORK( IB+1 ), LDWORK ) |
|
178 END IF |
|
179 10 CONTINUE |
|
180 ELSE |
|
181 I = 1 |
|
182 END IF |
|
183 * |
|
184 * Use unblocked code to factor the last or only block. |
|
185 * |
|
186 IF( I.LE.K ) |
|
187 $ CALL ZGELQ2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK, |
|
188 $ IINFO ) |
|
189 * |
|
190 WORK( 1 ) = IWS |
|
191 RETURN |
|
192 * |
|
193 * End of ZGELQF |
|
194 * |
|
195 END |