4347
|
1 SUBROUTINE STRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, |
|
2 $ B, LDB ) |
|
3 * .. Scalar Arguments .. |
|
4 CHARACTER*1 SIDE, UPLO, TRANSA, DIAG |
|
5 INTEGER M, N, LDA, LDB |
|
6 REAL ALPHA |
|
7 * .. Array Arguments .. |
|
8 REAL A( LDA, * ), B( LDB, * ) |
|
9 * .. |
|
10 * |
|
11 * Purpose |
|
12 * ======= |
|
13 * |
|
14 * STRSM solves one of the matrix equations |
|
15 * |
|
16 * op( A )*X = alpha*B, or X*op( A ) = alpha*B, |
|
17 * |
|
18 * where alpha is a scalar, X and B are m by n matrices, A is a unit, or |
|
19 * non-unit, upper or lower triangular matrix and op( A ) is one of |
|
20 * |
|
21 * op( A ) = A or op( A ) = A'. |
|
22 * |
|
23 * The matrix X is overwritten on B. |
|
24 * |
|
25 * Parameters |
|
26 * ========== |
|
27 * |
|
28 * SIDE - CHARACTER*1. |
|
29 * On entry, SIDE specifies whether op( A ) appears on the left |
|
30 * or right of X as follows: |
|
31 * |
|
32 * SIDE = 'L' or 'l' op( A )*X = alpha*B. |
|
33 * |
|
34 * SIDE = 'R' or 'r' X*op( A ) = alpha*B. |
|
35 * |
|
36 * Unchanged on exit. |
|
37 * |
|
38 * UPLO - CHARACTER*1. |
|
39 * On entry, UPLO specifies whether the matrix A is an upper or |
|
40 * lower triangular matrix as follows: |
|
41 * |
|
42 * UPLO = 'U' or 'u' A is an upper triangular matrix. |
|
43 * |
|
44 * UPLO = 'L' or 'l' A is a lower triangular matrix. |
|
45 * |
|
46 * Unchanged on exit. |
|
47 * |
|
48 * TRANSA - CHARACTER*1. |
|
49 * On entry, TRANSA specifies the form of op( A ) to be used in |
|
50 * the matrix multiplication as follows: |
|
51 * |
|
52 * TRANSA = 'N' or 'n' op( A ) = A. |
|
53 * |
|
54 * TRANSA = 'T' or 't' op( A ) = A'. |
|
55 * |
|
56 * TRANSA = 'C' or 'c' op( A ) = A'. |
|
57 * |
|
58 * Unchanged on exit. |
|
59 * |
|
60 * DIAG - CHARACTER*1. |
|
61 * On entry, DIAG specifies whether or not A is unit triangular |
|
62 * as follows: |
|
63 * |
|
64 * DIAG = 'U' or 'u' A is assumed to be unit triangular. |
|
65 * |
|
66 * DIAG = 'N' or 'n' A is not assumed to be unit |
|
67 * triangular. |
|
68 * |
|
69 * Unchanged on exit. |
|
70 * |
|
71 * M - INTEGER. |
|
72 * On entry, M specifies the number of rows of B. M must be at |
|
73 * least zero. |
|
74 * Unchanged on exit. |
|
75 * |
|
76 * N - INTEGER. |
|
77 * On entry, N specifies the number of columns of B. N must be |
|
78 * at least zero. |
|
79 * Unchanged on exit. |
|
80 * |
|
81 * ALPHA - REAL . |
|
82 * On entry, ALPHA specifies the scalar alpha. When alpha is |
|
83 * zero then A is not referenced and B need not be set before |
|
84 * entry. |
|
85 * Unchanged on exit. |
|
86 * |
|
87 * A - REAL array of DIMENSION ( LDA, k ), where k is m |
|
88 * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. |
|
89 * Before entry with UPLO = 'U' or 'u', the leading k by k |
|
90 * upper triangular part of the array A must contain the upper |
|
91 * triangular matrix and the strictly lower triangular part of |
|
92 * A is not referenced. |
|
93 * Before entry with UPLO = 'L' or 'l', the leading k by k |
|
94 * lower triangular part of the array A must contain the lower |
|
95 * triangular matrix and the strictly upper triangular part of |
|
96 * A is not referenced. |
|
97 * Note that when DIAG = 'U' or 'u', the diagonal elements of |
|
98 * A are not referenced either, but are assumed to be unity. |
|
99 * Unchanged on exit. |
|
100 * |
|
101 * LDA - INTEGER. |
|
102 * On entry, LDA specifies the first dimension of A as declared |
|
103 * in the calling (sub) program. When SIDE = 'L' or 'l' then |
|
104 * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' |
|
105 * then LDA must be at least max( 1, n ). |
|
106 * Unchanged on exit. |
|
107 * |
|
108 * B - REAL array of DIMENSION ( LDB, n ). |
|
109 * Before entry, the leading m by n part of the array B must |
|
110 * contain the right-hand side matrix B, and on exit is |
|
111 * overwritten by the solution matrix X. |
|
112 * |
|
113 * LDB - INTEGER. |
|
114 * On entry, LDB specifies the first dimension of B as declared |
|
115 * in the calling (sub) program. LDB must be at least |
|
116 * max( 1, m ). |
|
117 * Unchanged on exit. |
|
118 * |
|
119 * |
|
120 * Level 3 Blas routine. |
|
121 * |
|
122 * |
|
123 * -- Written on 8-February-1989. |
|
124 * Jack Dongarra, Argonne National Laboratory. |
|
125 * Iain Duff, AERE Harwell. |
|
126 * Jeremy Du Croz, Numerical Algorithms Group Ltd. |
|
127 * Sven Hammarling, Numerical Algorithms Group Ltd. |
|
128 * |
|
129 * |
|
130 * .. External Functions .. |
|
131 LOGICAL LSAME |
|
132 EXTERNAL LSAME |
|
133 * .. External Subroutines .. |
|
134 EXTERNAL XERBLA |
|
135 * .. Intrinsic Functions .. |
|
136 INTRINSIC MAX |
|
137 * .. Local Scalars .. |
|
138 LOGICAL LSIDE, NOUNIT, UPPER |
|
139 INTEGER I, INFO, J, K, NROWA |
|
140 REAL TEMP |
|
141 * .. Parameters .. |
|
142 REAL ONE , ZERO |
|
143 PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) |
|
144 * .. |
|
145 * .. Executable Statements .. |
|
146 * |
|
147 * Test the input parameters. |
|
148 * |
|
149 LSIDE = LSAME( SIDE , 'L' ) |
|
150 IF( LSIDE )THEN |
|
151 NROWA = M |
|
152 ELSE |
|
153 NROWA = N |
|
154 END IF |
|
155 NOUNIT = LSAME( DIAG , 'N' ) |
|
156 UPPER = LSAME( UPLO , 'U' ) |
|
157 * |
|
158 INFO = 0 |
|
159 IF( ( .NOT.LSIDE ).AND. |
|
160 $ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN |
|
161 INFO = 1 |
|
162 ELSE IF( ( .NOT.UPPER ).AND. |
|
163 $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN |
|
164 INFO = 2 |
|
165 ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND. |
|
166 $ ( .NOT.LSAME( TRANSA, 'T' ) ).AND. |
|
167 $ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN |
|
168 INFO = 3 |
|
169 ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND. |
|
170 $ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN |
|
171 INFO = 4 |
|
172 ELSE IF( M .LT.0 )THEN |
|
173 INFO = 5 |
|
174 ELSE IF( N .LT.0 )THEN |
|
175 INFO = 6 |
|
176 ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN |
|
177 INFO = 9 |
|
178 ELSE IF( LDB.LT.MAX( 1, M ) )THEN |
|
179 INFO = 11 |
|
180 END IF |
|
181 IF( INFO.NE.0 )THEN |
|
182 CALL XERBLA( 'STRSM ', INFO ) |
|
183 RETURN |
|
184 END IF |
|
185 * |
|
186 * Quick return if possible. |
|
187 * |
|
188 IF( N.EQ.0 ) |
|
189 $ RETURN |
|
190 * |
|
191 * And when alpha.eq.zero. |
|
192 * |
|
193 IF( ALPHA.EQ.ZERO )THEN |
|
194 DO 20, J = 1, N |
|
195 DO 10, I = 1, M |
|
196 B( I, J ) = ZERO |
|
197 10 CONTINUE |
|
198 20 CONTINUE |
|
199 RETURN |
|
200 END IF |
|
201 * |
|
202 * Start the operations. |
|
203 * |
|
204 IF( LSIDE )THEN |
|
205 IF( LSAME( TRANSA, 'N' ) )THEN |
|
206 * |
|
207 * Form B := alpha*inv( A )*B. |
|
208 * |
|
209 IF( UPPER )THEN |
|
210 DO 60, J = 1, N |
|
211 IF( ALPHA.NE.ONE )THEN |
|
212 DO 30, I = 1, M |
|
213 B( I, J ) = ALPHA*B( I, J ) |
|
214 30 CONTINUE |
|
215 END IF |
|
216 DO 50, K = M, 1, -1 |
|
217 IF( B( K, J ).NE.ZERO )THEN |
|
218 IF( NOUNIT ) |
|
219 $ B( K, J ) = B( K, J )/A( K, K ) |
|
220 DO 40, I = 1, K - 1 |
|
221 B( I, J ) = B( I, J ) - B( K, J )*A( I, K ) |
|
222 40 CONTINUE |
|
223 END IF |
|
224 50 CONTINUE |
|
225 60 CONTINUE |
|
226 ELSE |
|
227 DO 100, J = 1, N |
|
228 IF( ALPHA.NE.ONE )THEN |
|
229 DO 70, I = 1, M |
|
230 B( I, J ) = ALPHA*B( I, J ) |
|
231 70 CONTINUE |
|
232 END IF |
|
233 DO 90 K = 1, M |
|
234 IF( B( K, J ).NE.ZERO )THEN |
|
235 IF( NOUNIT ) |
|
236 $ B( K, J ) = B( K, J )/A( K, K ) |
|
237 DO 80, I = K + 1, M |
|
238 B( I, J ) = B( I, J ) - B( K, J )*A( I, K ) |
|
239 80 CONTINUE |
|
240 END IF |
|
241 90 CONTINUE |
|
242 100 CONTINUE |
|
243 END IF |
|
244 ELSE |
|
245 * |
|
246 * Form B := alpha*inv( A' )*B. |
|
247 * |
|
248 IF( UPPER )THEN |
|
249 DO 130, J = 1, N |
|
250 DO 120, I = 1, M |
|
251 TEMP = ALPHA*B( I, J ) |
|
252 DO 110, K = 1, I - 1 |
|
253 TEMP = TEMP - A( K, I )*B( K, J ) |
|
254 110 CONTINUE |
|
255 IF( NOUNIT ) |
|
256 $ TEMP = TEMP/A( I, I ) |
|
257 B( I, J ) = TEMP |
|
258 120 CONTINUE |
|
259 130 CONTINUE |
|
260 ELSE |
|
261 DO 160, J = 1, N |
|
262 DO 150, I = M, 1, -1 |
|
263 TEMP = ALPHA*B( I, J ) |
|
264 DO 140, K = I + 1, M |
|
265 TEMP = TEMP - A( K, I )*B( K, J ) |
|
266 140 CONTINUE |
|
267 IF( NOUNIT ) |
|
268 $ TEMP = TEMP/A( I, I ) |
|
269 B( I, J ) = TEMP |
|
270 150 CONTINUE |
|
271 160 CONTINUE |
|
272 END IF |
|
273 END IF |
|
274 ELSE |
|
275 IF( LSAME( TRANSA, 'N' ) )THEN |
|
276 * |
|
277 * Form B := alpha*B*inv( A ). |
|
278 * |
|
279 IF( UPPER )THEN |
|
280 DO 210, J = 1, N |
|
281 IF( ALPHA.NE.ONE )THEN |
|
282 DO 170, I = 1, M |
|
283 B( I, J ) = ALPHA*B( I, J ) |
|
284 170 CONTINUE |
|
285 END IF |
|
286 DO 190, K = 1, J - 1 |
|
287 IF( A( K, J ).NE.ZERO )THEN |
|
288 DO 180, I = 1, M |
|
289 B( I, J ) = B( I, J ) - A( K, J )*B( I, K ) |
|
290 180 CONTINUE |
|
291 END IF |
|
292 190 CONTINUE |
|
293 IF( NOUNIT )THEN |
|
294 TEMP = ONE/A( J, J ) |
|
295 DO 200, I = 1, M |
|
296 B( I, J ) = TEMP*B( I, J ) |
|
297 200 CONTINUE |
|
298 END IF |
|
299 210 CONTINUE |
|
300 ELSE |
|
301 DO 260, J = N, 1, -1 |
|
302 IF( ALPHA.NE.ONE )THEN |
|
303 DO 220, I = 1, M |
|
304 B( I, J ) = ALPHA*B( I, J ) |
|
305 220 CONTINUE |
|
306 END IF |
|
307 DO 240, K = J + 1, N |
|
308 IF( A( K, J ).NE.ZERO )THEN |
|
309 DO 230, I = 1, M |
|
310 B( I, J ) = B( I, J ) - A( K, J )*B( I, K ) |
|
311 230 CONTINUE |
|
312 END IF |
|
313 240 CONTINUE |
|
314 IF( NOUNIT )THEN |
|
315 TEMP = ONE/A( J, J ) |
|
316 DO 250, I = 1, M |
|
317 B( I, J ) = TEMP*B( I, J ) |
|
318 250 CONTINUE |
|
319 END IF |
|
320 260 CONTINUE |
|
321 END IF |
|
322 ELSE |
|
323 * |
|
324 * Form B := alpha*B*inv( A' ). |
|
325 * |
|
326 IF( UPPER )THEN |
|
327 DO 310, K = N, 1, -1 |
|
328 IF( NOUNIT )THEN |
|
329 TEMP = ONE/A( K, K ) |
|
330 DO 270, I = 1, M |
|
331 B( I, K ) = TEMP*B( I, K ) |
|
332 270 CONTINUE |
|
333 END IF |
|
334 DO 290, J = 1, K - 1 |
|
335 IF( A( J, K ).NE.ZERO )THEN |
|
336 TEMP = A( J, K ) |
|
337 DO 280, I = 1, M |
|
338 B( I, J ) = B( I, J ) - TEMP*B( I, K ) |
|
339 280 CONTINUE |
|
340 END IF |
|
341 290 CONTINUE |
|
342 IF( ALPHA.NE.ONE )THEN |
|
343 DO 300, I = 1, M |
|
344 B( I, K ) = ALPHA*B( I, K ) |
|
345 300 CONTINUE |
|
346 END IF |
|
347 310 CONTINUE |
|
348 ELSE |
|
349 DO 360, K = 1, N |
|
350 IF( NOUNIT )THEN |
|
351 TEMP = ONE/A( K, K ) |
|
352 DO 320, I = 1, M |
|
353 B( I, K ) = TEMP*B( I, K ) |
|
354 320 CONTINUE |
|
355 END IF |
|
356 DO 340, J = K + 1, N |
|
357 IF( A( J, K ).NE.ZERO )THEN |
|
358 TEMP = A( J, K ) |
|
359 DO 330, I = 1, M |
|
360 B( I, J ) = B( I, J ) - TEMP*B( I, K ) |
|
361 330 CONTINUE |
|
362 END IF |
|
363 340 CONTINUE |
|
364 IF( ALPHA.NE.ONE )THEN |
|
365 DO 350, I = 1, M |
|
366 B( I, K ) = ALPHA*B( I, K ) |
|
367 350 CONTINUE |
|
368 END IF |
|
369 360 CONTINUE |
|
370 END IF |
|
371 END IF |
|
372 END IF |
|
373 * |
|
374 RETURN |
|
375 * |
|
376 * End of STRSM . |
|
377 * |
|
378 END |