7018
|
1 @c Copyright (C) 1996, 1997, 1999, 2000, 2002, 2004, 2005, 2006, |
|
2 @c 2007 John W. Eaton |
|
3 @c |
|
4 @c This file is part of Octave. |
|
5 @c |
|
6 @c Octave is free software; you can redistribute it and/or modify it |
|
7 @c under the terms of the GNU General Public License as published by the |
|
8 @c Free Software Foundation; either version 3 of the License, or (at |
|
9 @c your option) any later version. |
|
10 @c |
|
11 @c Octave is distributed in the hope that it will be useful, but WITHOUT |
|
12 @c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
13 @c FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
14 @c for more details. |
|
15 @c |
|
16 @c You should have received a copy of the GNU General Public License |
|
17 @c along with Octave; see the file COPYING. If not, see |
|
18 @c <http://www.gnu.org/licenses/>. |
3294
|
19 |
4167
|
20 @node Statistics |
3294
|
21 @chapter Statistics |
|
22 |
6754
|
23 Octave has support for various statistical methods. This includes |
|
24 basic descriptive statistics, statistical tests, random number generation, |
|
25 and much more. |
|
26 |
|
27 The functions that analyze data all assume that multidimensional data |
|
28 is arranged in a matrix where each row is an observation, and each |
|
29 column is a variable. So, the matrix defined by |
|
30 |
|
31 @example |
|
32 a = [ 0.9, 0.7; |
|
33 0.1, 0.1; |
|
34 0.5, 0.4 ]; |
|
35 @end example |
|
36 |
|
37 @noindent |
|
38 contains three observations from a two-dimensional distribution. |
|
39 While this is the default data arrangement, most functions support |
|
40 different arrangements. |
|
41 |
6939
|
42 It should be noted that the statistics functions don't handle data |
|
43 containing NaN, NA, or Inf. Such values need to be handled explicitly. |
6754
|
44 |
3453
|
45 @menu |
6754
|
46 * Descriptive Statistics:: |
|
47 * Basic Statistical Functions:: |
|
48 * Statistical Plots:: |
3454
|
49 * Tests:: |
3453
|
50 * Models:: |
6754
|
51 * Distributions:: |
|
52 * Random Number Generation:: |
3453
|
53 @end menu |
|
54 |
6754
|
55 @node Descriptive Statistics |
|
56 @section Descriptive Statistics |
|
57 |
|
58 Octave can compute various statistics such as the moments of a data set. |
3453
|
59 |
3367
|
60 @DOCSTRING(mean) |
3294
|
61 |
3367
|
62 @DOCSTRING(median) |
3294
|
63 |
6754
|
64 @DOCSTRING(meansq) |
|
65 |
3367
|
66 @DOCSTRING(std) |
3294
|
67 |
6754
|
68 @DOCSTRING(var) |
|
69 |
6863
|
70 @DOCSTRING(mode) |
|
71 |
3367
|
72 @DOCSTRING(cov) |
3294
|
73 |
6754
|
74 @DOCSTRING(cor) |
|
75 |
3367
|
76 @DOCSTRING(corrcoef) |
3294
|
77 |
3367
|
78 @DOCSTRING(kurtosis) |
3294
|
79 |
6754
|
80 @DOCSTRING(skewness) |
|
81 |
|
82 @DOCSTRING(statistics) |
|
83 |
|
84 @DOCSTRING(moment) |
|
85 |
|
86 @node Basic Statistical Functions |
|
87 @section Basic Statistical Functions |
|
88 |
|
89 Octave also supports various helpful statistical functions. |
|
90 |
3367
|
91 @DOCSTRING(mahalanobis) |
3294
|
92 |
6754
|
93 @DOCSTRING(center) |
3453
|
94 |
6754
|
95 @DOCSTRING(studentize) |
3453
|
96 |
6550
|
97 @DOCSTRING(nchoosek) |
|
98 |
|
99 @DOCSTRING(perms) |
|
100 |
3453
|
101 @DOCSTRING(values) |
|
102 |
|
103 @DOCSTRING(table) |
|
104 |
|
105 @DOCSTRING(spearman) |
|
106 |
|
107 @DOCSTRING(run_count) |
|
108 |
|
109 @DOCSTRING(ranks) |
|
110 |
|
111 @DOCSTRING(range) |
|
112 |
|
113 @DOCSTRING(probit) |
|
114 |
6754
|
115 @DOCSTRING(logit) |
3453
|
116 |
6754
|
117 @DOCSTRING(cloglog) |
3453
|
118 |
|
119 @DOCSTRING(kendall) |
|
120 |
|
121 @DOCSTRING(iqr) |
|
122 |
|
123 @DOCSTRING(cut) |
|
124 |
6754
|
125 @node Statistical Plots |
|
126 @section Statistical Plots |
|
127 |
|
128 @c Should hist be moved to here, or perhaps the qqplot and ppplot |
|
129 @c functions should be moved to the Plotting Chapter? |
3453
|
130 |
6754
|
131 Octave can create Quantile Plots (QQ-Plots), and Probability Plots |
|
132 (PP-Plots). These are simple graphical tests for determining if a |
|
133 data set comes from a certain distribution. |
3453
|
134 |
6754
|
135 It is worth noticing that Octave can also show histograms of data |
|
136 using the @code{hist} function as described in |
6888
|
137 @ref{Two-Dimensional Plots}. |
6754
|
138 |
|
139 @DOCSTRING(qqplot) |
|
140 |
|
141 @DOCSTRING(ppplot) |
3453
|
142 |
4167
|
143 @node Tests |
3453
|
144 @section Tests |
|
145 |
6754
|
146 Octave can perform several different statistical tests. The following |
|
147 table summarizes the available tests. |
|
148 |
7081
|
149 @iftex |
|
150 @tex |
|
151 \vskip 6pt |
|
152 {\hbox to \hsize {\hfill\vbox{\offinterlineskip \tabskip=0pt |
|
153 \halign{ |
|
154 \vrule height2.0ex depth1.ex width 0.6pt #\tabskip=0.3em & |
|
155 # \hfil & \vrule # & # \hfil & # \vrule width 0.6pt \tabskip=0pt\cr |
|
156 \noalign{\hrule height 0.6pt} |
|
157 & @strong{Hypothesis} && {\bf Test Functions} &\cr |
|
158 \noalign{\hrule} |
|
159 & Equal mean values && anova, hotelling\_test2, t\_test\_2, &\cr |
|
160 & && welch\_test, wilcoxon\_test, z\_test\_2 &\cr |
|
161 & Equal medians && kruskal\_wallis\_test, sign\_test &\cr |
|
162 & Equal variances && bartlett\_test, manova, var\_test &\cr |
|
163 & Equal distributions && chisquare\_test\_homogeneity, &\cr |
|
164 & && kolmogorov\_smirnov\_test\_2, u\_test &\cr |
|
165 & Equal marginal frequencies && mcnemar\_test &\cr |
|
166 & Equal success probabilities && prop\_test\_2 &\cr |
|
167 & Independent observations && chisquare\_test\_independence, &\cr |
|
168 & && run\_test &\cr |
|
169 & Uncorrelated observations && cor\_test &\cr |
|
170 & Given mean value && hotelling\_test, t\_test, z\_test &\cr |
|
171 & Observations from distribution && kolmogorov\_smirnov\_test &\cr |
|
172 & Regression && f\_test\_regression, t\_test\_regression &\cr |
|
173 \noalign{\hrule height 0.6pt} |
|
174 }}\hfill}} |
|
175 @end tex |
|
176 @end iftex |
|
177 @ifnottex |
6754
|
178 @multitable @columnfractions .4 .5 |
|
179 @item @strong{Hypothesis} |
|
180 @tab @strong{Test Functions} |
|
181 @item Equal mean values |
|
182 @tab @code{anova}, @code{hotelling_test2}, @code{t_test_2}, |
|
183 @code{welch_test}, @code{wilcoxon_test}, @code{z_test_2} |
|
184 @item Equal medians |
|
185 @tab @code{kruskal_wallis_test}, @code{sign_test} |
|
186 @item Equal variances |
|
187 @tab @code{bartlett_test}, @code{manova}, @code{var_test} |
|
188 @item Equal distributions |
|
189 @tab @code{chisquare_test_homogeneity}, @code{kolmogorov_smirnov_test_2}, |
|
190 @code{u_test} |
|
191 @item Equal marginal frequencies |
|
192 @tab @code{mcnemar_test} |
|
193 @item Equal success probabilities |
|
194 @tab @code{prop_test_2} |
|
195 @item Independent observations |
|
196 @tab @code{chisquare_test_independence}, @code{run_test} |
|
197 @item Uncorrelated observations |
|
198 @tab @code{cor_test} |
|
199 @item Given mean value |
|
200 @tab @code{hotelling_test}, @code{t_test}, @code{z_test} |
|
201 @item Observations from given distribution |
|
202 @tab @code{kolmogorov_smirnov_test} |
|
203 @item Regression |
|
204 @tab @code{f_test_regression}, @code{t_test_regression} |
|
205 @end multitable |
7081
|
206 @end ifnottex |
6754
|
207 |
|
208 The tests return a p-value that describes the outcome of the test. |
|
209 Assuming that the test hypothesis is true, the p-value is the probability |
6939
|
210 of obtaining a worse result than the observed one. So large p-values |
6754
|
211 corresponds to a successful test. Usually a test hypothesis is accepted |
|
212 if the p-value exceeds @math{0.05}. |
|
213 |
3454
|
214 @DOCSTRING(anova) |
|
215 |
|
216 @DOCSTRING(bartlett_test) |
|
217 |
|
218 @DOCSTRING(chisquare_test_homogeneity) |
|
219 |
|
220 @DOCSTRING(chisquare_test_independence) |
|
221 |
|
222 @DOCSTRING(cor_test) |
|
223 |
|
224 @DOCSTRING(f_test_regression) |
|
225 |
|
226 @DOCSTRING(hotelling_test) |
|
227 |
|
228 @DOCSTRING(hotelling_test_2) |
|
229 |
|
230 @DOCSTRING(kolmogorov_smirnov_test) |
|
231 |
|
232 @DOCSTRING(kolmogorov_smirnov_test_2) |
|
233 |
|
234 @DOCSTRING(kruskal_wallis_test) |
|
235 |
|
236 @DOCSTRING(manova) |
|
237 |
|
238 @DOCSTRING(mcnemar_test) |
|
239 |
|
240 @DOCSTRING(prop_test_2) |
|
241 |
|
242 @DOCSTRING(run_test) |
|
243 |
|
244 @DOCSTRING(sign_test) |
|
245 |
|
246 @DOCSTRING(t_test) |
|
247 |
|
248 @DOCSTRING(t_test_2) |
|
249 |
|
250 @DOCSTRING(t_test_regression) |
|
251 |
|
252 @DOCSTRING(u_test) |
|
253 |
|
254 @DOCSTRING(var_test) |
|
255 |
|
256 @DOCSTRING(welch_test) |
|
257 |
|
258 @DOCSTRING(wilcoxon_test) |
|
259 |
|
260 @DOCSTRING(z_test) |
|
261 |
|
262 @DOCSTRING(z_test_2) |
|
263 |
4167
|
264 @node Models |
3453
|
265 @section Models |
|
266 |
3454
|
267 @DOCSTRING(logistic_regression) |
|
268 |
4167
|
269 @node Distributions |
3453
|
270 @section Distributions |
3456
|
271 |
6754
|
272 Octave has functions for computing the Probability Density Function |
|
273 (PDF), the Cumulative Distribution function (CDF), and the quantile |
|
274 (the inverse of the CDF) of a large number of distributions. |
|
275 |
|
276 The following table summarizes the supported distributions (in |
|
277 alphabetical order). |
|
278 |
7081
|
279 @c Do the table explicitly in TeX if possible to get a better layout. |
|
280 @iftex |
|
281 @tex |
|
282 \vskip 6pt |
|
283 {\hbox to \hsize {\hfill\vbox{\offinterlineskip \tabskip=0pt |
|
284 \halign{ |
|
285 \vrule height2.0ex depth1.ex width 0.6pt #\tabskip=0.3em & |
|
286 # \hfil & \vrule # & # \hfil & \vrule # & # \hfil & \vrule # & # \hfil & |
|
287 # \vrule width 0.6pt \tabskip=0pt\cr |
|
288 \noalign{\hrule height 0.6pt} |
|
289 & {\bf Distribution} && {\bf PDF} && {\bf CDF} && {\bf Quantile}&\cr |
|
290 \noalign{\hrule} |
|
291 &Beta && betapdf && betacdf && betainv&\cr |
|
292 &Binomial && binopdf && binocdf && binoinv&\cr |
|
293 &Cauchy && cauchy\_pdf && cauchy\_cdf && cauchy\_inv&\cr |
|
294 &Chi-Square && chi2pdf && chi2cdf && chi2inv&\cr |
|
295 &Univariate Discrete && discrete\_pdf && discrete\_cdf && discrete\_inv&\cr |
|
296 &Empirical && empirical\_pdf && empirical\_cdf && empirical\_inv&\cr |
|
297 &Exponential && exppdf && expcdf && expinv&\cr |
|
298 &F && fpdf && fcdf && finv&\cr |
|
299 &Gamma && gampdf && gamcdf && gaminv&\cr |
|
300 &Geometric && geopdf && geocdf && geoinv&\cr |
|
301 &Hypergeometric && hygepdf && hygecdf && hygeinv&\cr |
|
302 &Kolmogorov Smirnov && {\it Not Available} && kolmogorov\_&& {\it Not Available}&\cr |
|
303 & && && smirnov\_cdf &&&\cr |
|
304 &Laplace && laplace\_pdf && laplace\_cdf && laplace\_inv&\cr |
|
305 &Logistic && logistic\_pdf && logistic\_cdf && logistic\_inv&\cr |
|
306 &Log-Normal && lognpdf && logncdf && logninv&\cr |
|
307 &Pascal && nbinpdf && nbincdf && nbininv&\cr |
|
308 &Univariate Normal && normpdf && normcdf && norminv&\cr |
|
309 &Poisson && poisspdf && poisscdf && poissinv&\cr |
|
310 &t (Student) && tpdf && tcdf && tinv&\cr |
|
311 &Univariate Discrete && unidpdf && unidcdf && unidinv&\cr |
|
312 &Uniform && unifpdf && unifcdf && unifinv&\cr |
|
313 &Weibull && wblpdf && wblcdf && wblinv&\cr |
|
314 \noalign{\hrule height 0.6pt} |
|
315 }}\hfill}} |
|
316 @end tex |
|
317 @end iftex |
|
318 @ifnottex |
|
319 @multitable @columnfractions .31 .23 .23 .23 |
6754
|
320 @item @strong{Distribution} |
|
321 @tab @strong{PDF} |
|
322 @tab @strong{CDF} |
|
323 @tab @strong{Quantile} |
|
324 @item Beta Distribution |
|
325 @tab @code{betapdf} |
|
326 @tab @code{betacdf} |
|
327 @tab @code{betainv} |
|
328 @item Binomial Distribution |
|
329 @tab @code{binopdf} |
|
330 @tab @code{binocdf} |
|
331 @tab @code{binoinv} |
|
332 @item Cauchy Distribution |
|
333 @tab @code{cauchy_pdf} |
|
334 @tab @code{cauchy_cdf} |
|
335 @tab @code{cauchy_inv} |
|
336 @item Chi-Square Distribution |
|
337 @tab @code{chi2pdf} |
|
338 @tab @code{chi2cdf} |
|
339 @tab @code{chi2inv} |
|
340 @item Univariate Discrete Distribution |
|
341 @tab @code{discrete_pdf} |
|
342 @tab @code{discrete_cdf} |
|
343 @tab @code{discrete_inv} |
|
344 @item Empirical Distribution |
|
345 @tab @code{empirical_pdf} |
|
346 @tab @code{empirical_cdf} |
|
347 @tab @code{empirical_inv} |
|
348 @item Exponential Distribution |
|
349 @tab @code{exppdf} |
|
350 @tab @code{expcdf} |
|
351 @tab @code{expinv} |
|
352 @item F Distribution |
|
353 @tab @code{fpdf} |
|
354 @tab @code{fcdf} |
|
355 @tab @code{finv} |
|
356 @item Gamma Distribution |
|
357 @tab @code{gampdf} |
|
358 @tab @code{gamcdf} |
|
359 @tab @code{gaminv} |
|
360 @item Geometric Distribution |
|
361 @tab @code{geopdf} |
|
362 @tab @code{geocdf} |
|
363 @tab @code{geoinv} |
|
364 @item Hypergeometric Distribution |
|
365 @tab @code{hygepdf} |
|
366 @tab @code{hygecdf} |
|
367 @tab @code{hygeinv} |
|
368 @item Kolmogorov Smirnov Distribution |
|
369 @tab @emph{Not Available} |
|
370 @tab @code{kolmogorov_smirnov_cdf} |
|
371 @tab @emph{Not Available} |
|
372 @item Laplace Distribution |
|
373 @tab @code{laplace_pdf} |
|
374 @tab @code{laplace_cdf} |
|
375 @tab @code{laplace_inv} |
|
376 @item Logistic Distribution |
|
377 @tab @code{logistic_pdf} |
|
378 @tab @code{logistic_cdf} |
|
379 @tab @code{logistic_inv} |
|
380 @item Log-Normal Distribution |
|
381 @tab @code{lognpdf} |
|
382 @tab @code{logncdf} |
|
383 @tab @code{logninv} |
|
384 @item Pascal Distribution |
|
385 @tab @code{nbinpdf} |
|
386 @tab @code{nbincdf} |
|
387 @tab @code{nbininv} |
|
388 @item Univariate Normal Distribution |
|
389 @tab @code{normpdf} |
|
390 @tab @code{normcdf} |
|
391 @tab @code{norminv} |
|
392 @item Poisson Distribution |
|
393 @tab @code{poisspdf} |
|
394 @tab @code{poisscdf} |
|
395 @tab @code{poissinv} |
|
396 @item t (Student) Distribution |
|
397 @tab @code{tpdf} |
|
398 @tab @code{tcdf} |
|
399 @tab @code{tinv} |
7081
|
400 @item Univariate Discrete Distribution |
6754
|
401 @tab @code{unidpdf} |
|
402 @tab @code{unidcdf} |
|
403 @tab @code{unidinv} |
|
404 @item Uniform Distribution |
|
405 @tab @code{unifpdf} |
|
406 @tab @code{unifcdf} |
|
407 @tab @code{unifinv} |
|
408 @item Weibull Distribution |
|
409 @tab @code{wblpdf} |
|
410 @tab @code{wblcdf} |
|
411 @tab @code{wblinv} |
|
412 @end multitable |
7081
|
413 @end ifnottex |
6754
|
414 |
5412
|
415 @DOCSTRING(betacdf) |
3456
|
416 |
5412
|
417 @DOCSTRING(betainv) |
3456
|
418 |
5412
|
419 @DOCSTRING(betapdf) |
3456
|
420 |
5412
|
421 @DOCSTRING(binocdf) |
3456
|
422 |
5412
|
423 @DOCSTRING(binoinv) |
3456
|
424 |
5412
|
425 @DOCSTRING(binopdf) |
3456
|
426 |
|
427 @DOCSTRING(cauchy_cdf) |
|
428 |
|
429 @DOCSTRING(cauchy_inv) |
|
430 |
|
431 @DOCSTRING(cauchy_pdf) |
|
432 |
5412
|
433 @DOCSTRING(chi2cdf) |
3456
|
434 |
5412
|
435 @DOCSTRING(chi2inv) |
3456
|
436 |
5412
|
437 @DOCSTRING(chi2pdf) |
3456
|
438 |
|
439 @DOCSTRING(discrete_cdf) |
|
440 |
|
441 @DOCSTRING(discrete_inv) |
|
442 |
|
443 @DOCSTRING(discrete_pdf) |
|
444 |
|
445 @DOCSTRING(empirical_cdf) |
|
446 |
|
447 @DOCSTRING(empirical_inv) |
|
448 |
|
449 @DOCSTRING(empirical_pdf) |
|
450 |
5412
|
451 @DOCSTRING(expcdf) |
3456
|
452 |
5412
|
453 @DOCSTRING(expinv) |
3456
|
454 |
5412
|
455 @DOCSTRING(exppdf) |
3456
|
456 |
5412
|
457 @DOCSTRING(fcdf) |
3456
|
458 |
5412
|
459 @DOCSTRING(finv) |
3456
|
460 |
5412
|
461 @DOCSTRING(fpdf) |
3456
|
462 |
5412
|
463 @DOCSTRING(gamcdf) |
3456
|
464 |
5412
|
465 @DOCSTRING(gaminv) |
3456
|
466 |
5412
|
467 @DOCSTRING(gampdf) |
3456
|
468 |
5412
|
469 @DOCSTRING(geocdf) |
3456
|
470 |
5412
|
471 @DOCSTRING(geoinv) |
3456
|
472 |
5412
|
473 @DOCSTRING(geopdf) |
3456
|
474 |
5412
|
475 @DOCSTRING(hygecdf) |
3456
|
476 |
5412
|
477 @DOCSTRING(hygeinv) |
3456
|
478 |
5412
|
479 @DOCSTRING(hygepdf) |
3456
|
480 |
|
481 @DOCSTRING(kolmogorov_smirnov_cdf) |
|
482 |
|
483 @DOCSTRING(laplace_cdf) |
|
484 |
|
485 @DOCSTRING(laplace_inv) |
|
486 |
|
487 @DOCSTRING(laplace_pdf) |
|
488 |
|
489 @DOCSTRING(logistic_cdf) |
|
490 |
|
491 @DOCSTRING(logistic_inv) |
|
492 |
|
493 @DOCSTRING(logistic_pdf) |
|
494 |
5412
|
495 @DOCSTRING(logncdf) |
3456
|
496 |
5412
|
497 @DOCSTRING(logninv) |
3456
|
498 |
5412
|
499 @DOCSTRING(lognpdf) |
3456
|
500 |
6502
|
501 @DOCSTRING(nbincdf) |
|
502 |
|
503 @DOCSTRING(nbininv) |
|
504 |
|
505 @DOCSTRING(nbinpdf) |
|
506 |
5412
|
507 @DOCSTRING(normcdf) |
3456
|
508 |
5412
|
509 @DOCSTRING(norminv) |
3456
|
510 |
5412
|
511 @DOCSTRING(normpdf) |
3456
|
512 |
5412
|
513 @DOCSTRING(poisscdf) |
3456
|
514 |
5412
|
515 @DOCSTRING(poissinv) |
3456
|
516 |
5412
|
517 @DOCSTRING(poisspdf) |
3456
|
518 |
5412
|
519 @DOCSTRING(tcdf) |
3456
|
520 |
5412
|
521 @DOCSTRING(tinv) |
3456
|
522 |
5412
|
523 @DOCSTRING(tpdf) |
3456
|
524 |
6502
|
525 @DOCSTRING(unidcdf) |
|
526 |
|
527 @DOCSTRING(unidinv) |
|
528 |
|
529 @DOCSTRING(unidpdf) |
|
530 |
5412
|
531 @DOCSTRING(unifcdf) |
3456
|
532 |
5412
|
533 @DOCSTRING(unifinv) |
3456
|
534 |
5412
|
535 @DOCSTRING(unifpdf) |
3456
|
536 |
6502
|
537 @DOCSTRING(wblcdf) |
3456
|
538 |
6502
|
539 @DOCSTRING(wblinv) |
3456
|
540 |
6502
|
541 @DOCSTRING(wblpdf) |
3456
|
542 |
6754
|
543 @node Random Number Generation |
|
544 @section Random Number Generation |
|
545 |
|
546 Octave can generate random numbers from a large number of distributions. |
|
547 The random number generators are based on the random number generators |
|
548 described in @ref{Special Utility Matrices}. |
|
549 @c Should rand, randn, rande, randp, and randg be moved to here? |
|
550 |
|
551 The following table summarizes the available random number generators |
|
552 (in alphabetical order). |
|
553 |
7081
|
554 @iftex |
|
555 @tex |
|
556 \vskip 6pt |
|
557 {\hbox to \hsize {\hfill\vbox{\offinterlineskip \tabskip=0pt |
|
558 \halign{ |
|
559 \vrule height2.0ex depth1.ex width 0.6pt #\tabskip=0.3em & |
|
560 # \hfil & \vrule # & # \hfil & # \vrule width 0.6pt \tabskip=0pt\cr |
|
561 \noalign{\hrule height 0.6pt} |
|
562 & {\bf Distribution} && {\bf Function} &\cr |
|
563 \noalign{\hrule} |
|
564 & Beta Distribution && betarnd &\cr |
|
565 & Binomial Distribution && binornd &\cr |
|
566 & Cauchy Distribution && cauchy\_rnd &\cr |
|
567 & Chi-Square Distribution && chi2rnd &\cr |
|
568 & Univariate Discrete Distribution && discrete\_rnd &\cr |
|
569 & Empirical Distribution && empirical\_rnd &\cr |
|
570 & Exponential Distribution && exprnd &\cr |
|
571 & F Distribution && frnd &\cr |
|
572 & Gamma Distribution && gamrnd &\cr |
|
573 & Geometric Distribution && geornd &\cr |
|
574 & Hypergeometric Distribution && hygernd &\cr |
|
575 & Laplace Distribution && laplace\_rnd &\cr |
|
576 & Logistic Distribution && logistic\_rnd &\cr |
|
577 & Log-Normal Distribution && lognrnd &\cr |
|
578 & Pascal Distribution && nbinrnd &\cr |
|
579 & Univariate Normal Distribution && normrnd &\cr |
|
580 & Poisson Distribution && poissrnd &\cr |
|
581 & t (Student) Distribution && trnd &\cr |
|
582 & Univariate Discrete Distribution && unidrnd &\cr |
|
583 & Uniform Distribution && unifrnd &\cr |
|
584 & Weibull Distribution && wblrnd &\cr |
|
585 & Wiener Process && wienrnd &\cr |
|
586 \noalign{\hrule height 0.6pt} |
|
587 }}\hfill}} |
|
588 @end tex |
|
589 @end iftex |
|
590 @ifnottex |
6754
|
591 @multitable @columnfractions .4 .3 |
|
592 @item @strong{Distribution} @tab @strong{Function} |
|
593 @item Beta Distribution @tab @code{betarnd} |
|
594 @item Binomial Distribution @tab @code{binornd} |
|
595 @item Cauchy Distribution @tab @code{cauchy_rnd} |
|
596 @item Chi-Square Distribution @tab @code{chi2rnd} |
|
597 @item Univariate Discrete Distribution @tab @code{discrete_rnd} |
|
598 @item Empirical Distribution @tab @code{empirical_rnd} |
|
599 @item Exponential Distribution @tab @code{exprnd} |
|
600 @item F Distribution @tab @code{frnd} |
|
601 @item Gamma Distribution @tab @code{gamrnd} |
|
602 @item Geometric Distribution @tab @code{geornd} |
|
603 @item Hypergeometric Distribution @tab @code{hygernd} |
|
604 @item Laplace Distribution @tab @code{laplace_rnd} |
|
605 @item Logistic Distribution @tab @code{logistic_rnd} |
|
606 @item Log-Normal Distribution @tab @code{lognrnd} |
|
607 @item Pascal Distribution @tab @code{nbinrnd} |
|
608 @item Univariate Normal Distribution @tab @code{normrnd} |
|
609 @item Poisson Distribution @tab @code{poissrnd} |
|
610 @item t (Student) Distribution @tab @code{trnd} |
|
611 @item Univariate Discrete Distribution @tab @code{unidrnd} |
|
612 @item Uniform Distribution @tab @code{unifrnd} |
|
613 @item Weibull Distribution @tab @code{wblrnd} |
|
614 @item Wiener Process @tab @code{wienrnd} |
|
615 @end multitable |
7081
|
616 @end ifnottex |
6754
|
617 |
|
618 @DOCSTRING(betarnd) |
|
619 |
|
620 @DOCSTRING(binornd) |
|
621 |
|
622 @DOCSTRING(cauchy_rnd) |
|
623 |
|
624 @DOCSTRING(chi2rnd) |
|
625 |
|
626 @DOCSTRING(discrete_rnd) |
|
627 |
|
628 @DOCSTRING(empirical_rnd) |
|
629 |
|
630 @DOCSTRING(exprnd) |
|
631 |
|
632 @DOCSTRING(frnd) |
|
633 |
|
634 @DOCSTRING(gamrnd) |
|
635 |
|
636 @DOCSTRING(geornd) |
|
637 |
|
638 @DOCSTRING(hygernd) |
|
639 |
|
640 @DOCSTRING(laplace_rnd) |
|
641 |
|
642 @DOCSTRING(logistic_rnd) |
|
643 |
|
644 @DOCSTRING(lognrnd) |
|
645 |
|
646 @DOCSTRING(nbinrnd) |
|
647 |
|
648 @DOCSTRING(normrnd) |
|
649 |
|
650 @DOCSTRING(poissrnd) |
|
651 |
|
652 @DOCSTRING(trnd) |
|
653 |
|
654 @DOCSTRING(unidrnd) |
|
655 |
|
656 @DOCSTRING(unifrnd) |
|
657 |
6502
|
658 @DOCSTRING(wblrnd) |
3456
|
659 |
5412
|
660 @DOCSTRING(wienrnd) |
6754
|
661 |