558
|
1 function r = roots(v) |
|
2 # |
|
3 # For a vector v with n components, return the roots of the polynomial |
|
4 # v(1)*z^(n-1) + ... + v(n-1) * z + v(n). |
|
5 |
|
6 # written by KH (Kurt.Hornik@neuro.tuwien.ac.at) on Dec 24, 1993 |
|
7 # copyright Dept of Probability Theory and Statistics TU Wien |
|
8 # modified by KH on Jan 10, 1994 |
|
9 |
|
10 [nr, nc] = size(v); |
|
11 if !((nr == 1 && nc > 1) || (nc == 1 && nr > 1)) |
|
12 error("usage: roots(v), where v is a nonzero vector"); |
|
13 endif |
|
14 n = nr + nc - 1; |
|
15 v = reshape(v,1,n); |
|
16 # If v = [ 0 ... 0 v(k+1) ... v(k+l) 0 ... 0 ], we can remove the |
|
17 # leading k zeros and n-k-l roots of the polynomial are zero. |
|
18 f = find(v); |
|
19 m = max(size(f)); |
|
20 if (m > 0) |
|
21 v = v(f(1):f(m)); |
|
22 l = max(size(v)); |
|
23 if (l > 1) |
|
24 A = diag(ones(1, l-2), -1); |
|
25 A(1,:) = -v(2:l) ./ v(1); |
|
26 r = eig(A); |
|
27 if (f(m) < n) |
|
28 r = [r; zeros(n-f(m), 1)]; |
|
29 endif |
|
30 else |
|
31 r = zeros(n-f(m), 1); |
|
32 endif |
|
33 else |
|
34 error("usage: roots(v), where v is a nonzero vector"); |
|
35 endif |
|
36 |
|
37 endfunction |