Mercurial > hg > octave-lyh
comparison src/DLD-FUNCTIONS/symbfact.cc @ 11553:01f703952eff
Improve docstrings for functions in DLD-FUNCTIONS directory.
Use same variable names in error() strings and in documentation.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Sun, 16 Jan 2011 22:13:23 -0800 |
parents | fd0a3ac60b0e |
children | 12df7854fa7c |
comparison
equal
deleted
inserted
replaced
11552:6b6e9051ecb8 | 11553:01f703952eff |
---|---|
39 #include "oct-obj.h" | 39 #include "oct-obj.h" |
40 #include "utils.h" | 40 #include "utils.h" |
41 | 41 |
42 DEFUN_DLD (symbfact, args, nargout, | 42 DEFUN_DLD (symbfact, args, nargout, |
43 "-*- texinfo -*-\n\ | 43 "-*- texinfo -*-\n\ |
44 @deftypefn {Loadable Function} {[@var{count}, @var{h}, @var{parent}, @var{post}, @var{r}] =} symbfact (@var{s}, @var{typ}, @var{mode})\n\ | 44 @deftypefn {Loadable Function} {[@var{count}, @var{h}, @var{parent}, @var{post}, @var{r}] =} symbfact (@var{S})\n\ |
45 \n\ | 45 @deftypefnx {Loadable Function} {[@dots{}] =} symbfact (@var{S}, @var{typ})\n\ |
46 Performs a symbolic factorization analysis on the sparse matrix @var{s}.\n\ | 46 @deftypefnx {Loadable Function} {[@dots{}] =} symbfact (@var{S}, @var{typ}, @var{mode})\n\ |
47 \n\ | |
48 Perform a symbolic factorization analysis on the sparse matrix @var{S}.\n\ | |
47 Where\n\ | 49 Where\n\ |
48 \n\ | 50 \n\ |
49 @table @asis\n\ | 51 @table @var\n\ |
50 @item @var{s}\n\ | 52 @item S\n\ |
51 @var{s} is a complex or real sparse matrix.\n\ | 53 @var{S} is a complex or real sparse matrix.\n\ |
52 \n\ | 54 \n\ |
53 @item @var{typ}\n\ | 55 @item typ\n\ |
54 Is the type of the factorization and can be one of\n\ | 56 Is the type of the factorization and can be one of\n\ |
55 \n\ | 57 \n\ |
56 @table @code\n\ | 58 @table @samp\n\ |
57 @item sym\n\ | 59 @item sym\n\ |
58 Factorize @var{s}. This is the default.\n\ | 60 Factorize @var{S}. This is the default.\n\ |
59 \n\ | 61 \n\ |
60 @item col\n\ | 62 @item col\n\ |
61 Factorize @code{@var{s}' * @var{s}}.\n\ | 63 Factorize @code{@var{S}' * @var{S}}.\n\ |
62 \n\ | 64 \n\ |
63 @item row\n\ | 65 @item row\n\ |
64 Factorize @code{@var{s} * @var{s}'}.\n\ | 66 Factorize @code{@var{S} * @var{S}'}.\n\ |
65 \n\ | 67 \n\ |
66 @item lo\n\ | 68 @item lo\n\ |
67 Factorize @code{@var{s}'}\n\ | 69 Factorize @code{@var{S}'}\n\ |
68 @end table\n\ | 70 @end table\n\ |
69 \n\ | 71 \n\ |
70 @item @var{mode}\n\ | 72 @item mode\n\ |
71 The default is to return the Cholesky factorization for @var{r}, and if\n\ | 73 The default is to return the Cholesky@tie{}factorization for @var{r}, and if\n\ |
72 @var{mode} is 'L', the conjugate transpose of the Cholesky factorization\n\ | 74 @var{mode} is 'L', the conjugate transpose of the Cholesky@tie{}factorization\n\ |
73 is returned. The conjugate transpose version is faster and uses less\n\ | 75 is returned. The conjugate transpose version is faster and uses less\n\ |
74 memory, but returns the same values for @var{count}, @var{h}, @var{parent}\n\ | 76 memory, but returns the same values for @var{count}, @var{h}, @var{parent}\n\ |
75 and @var{post} outputs.\n\ | 77 and @var{post} outputs.\n\ |
76 @end table\n\ | 78 @end table\n\ |
77 \n\ | 79 \n\ |
78 The output variables are\n\ | 80 The output variables are\n\ |
79 \n\ | 81 \n\ |
80 @table @asis\n\ | 82 @table @var\n\ |
81 @item @var{count}\n\ | 83 @item count\n\ |
82 The row counts of the Cholesky factorization as determined by @var{typ}.\n\ | 84 The row counts of the Cholesky@tie{}factorization as determined by @var{typ}.\n\ |
83 \n\ | 85 \n\ |
84 @item @var{h}\n\ | 86 @item h\n\ |
85 The height of the elimination tree.\n\ | 87 The height of the elimination tree.\n\ |
86 \n\ | 88 \n\ |
87 @item @var{parent}\n\ | 89 @item parent\n\ |
88 The elimination tree itself.\n\ | 90 The elimination tree itself.\n\ |
89 \n\ | 91 \n\ |
90 @item @var{post}\n\ | 92 @item post\n\ |
91 A sparse boolean matrix whose structure is that of the Cholesky\n\ | 93 A sparse boolean matrix whose structure is that of the Cholesky\n\ |
92 factorization as determined by @var{typ}.\n\ | 94 factorization as determined by @var{typ}.\n\ |
93 @end table\n\ | 95 @end table\n\ |
94 @end deftypefn") | 96 @end deftypefn") |
95 { | 97 { |
187 else if (ch == 's') | 189 else if (ch == 's') |
188 A->stype = 1; | 190 A->stype = 1; |
189 else if (ch == 's') | 191 else if (ch == 's') |
190 A->stype = -1; | 192 A->stype = -1; |
191 else | 193 else |
192 error ("Unrecognized typ in symbolic factorization"); | 194 error ("symbfact: unrecognized TYP in symbolic factorization"); |
193 } | 195 } |
194 | 196 |
195 if (A->stype && A->nrow != A->ncol) | 197 if (A->stype && A->nrow != A->ncol) |
196 error ("Matrix must be square"); | 198 error ("symbfact: S must be a square matrix"); |
197 | 199 |
198 if (!error_state) | 200 if (!error_state) |
199 { | 201 { |
200 OCTAVE_LOCAL_BUFFER (octave_idx_type, Parent, n); | 202 OCTAVE_LOCAL_BUFFER (octave_idx_type, Parent, n); |
201 OCTAVE_LOCAL_BUFFER (octave_idx_type, Post, n); | 203 OCTAVE_LOCAL_BUFFER (octave_idx_type, Post, n); |