Mercurial > hg > octave-lyh
comparison libcruft/lapack/sggev.f @ 8408:15c23c1c3c18
add missing blas & lapack sources
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Mon, 15 Dec 2008 13:49:16 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
8407:096c22ce2b0b | 8408:15c23c1c3c18 |
---|---|
1 SUBROUTINE SGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI, | |
2 $ BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO ) | |
3 * | |
4 * -- LAPACK driver routine (version 3.1) -- | |
5 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. | |
6 * November 2006 | |
7 * | |
8 * .. Scalar Arguments .. | |
9 CHARACTER JOBVL, JOBVR | |
10 INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N | |
11 * .. | |
12 * .. Array Arguments .. | |
13 REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), | |
14 $ B( LDB, * ), BETA( * ), VL( LDVL, * ), | |
15 $ VR( LDVR, * ), WORK( * ) | |
16 * .. | |
17 * | |
18 * Purpose | |
19 * ======= | |
20 * | |
21 * SGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B) | |
22 * the generalized eigenvalues, and optionally, the left and/or right | |
23 * generalized eigenvectors. | |
24 * | |
25 * A generalized eigenvalue for a pair of matrices (A,B) is a scalar | |
26 * lambda or a ratio alpha/beta = lambda, such that A - lambda*B is | |
27 * singular. It is usually represented as the pair (alpha,beta), as | |
28 * there is a reasonable interpretation for beta=0, and even for both | |
29 * being zero. | |
30 * | |
31 * The right eigenvector v(j) corresponding to the eigenvalue lambda(j) | |
32 * of (A,B) satisfies | |
33 * | |
34 * A * v(j) = lambda(j) * B * v(j). | |
35 * | |
36 * The left eigenvector u(j) corresponding to the eigenvalue lambda(j) | |
37 * of (A,B) satisfies | |
38 * | |
39 * u(j)**H * A = lambda(j) * u(j)**H * B . | |
40 * | |
41 * where u(j)**H is the conjugate-transpose of u(j). | |
42 * | |
43 * | |
44 * Arguments | |
45 * ========= | |
46 * | |
47 * JOBVL (input) CHARACTER*1 | |
48 * = 'N': do not compute the left generalized eigenvectors; | |
49 * = 'V': compute the left generalized eigenvectors. | |
50 * | |
51 * JOBVR (input) CHARACTER*1 | |
52 * = 'N': do not compute the right generalized eigenvectors; | |
53 * = 'V': compute the right generalized eigenvectors. | |
54 * | |
55 * N (input) INTEGER | |
56 * The order of the matrices A, B, VL, and VR. N >= 0. | |
57 * | |
58 * A (input/output) REAL array, dimension (LDA, N) | |
59 * On entry, the matrix A in the pair (A,B). | |
60 * On exit, A has been overwritten. | |
61 * | |
62 * LDA (input) INTEGER | |
63 * The leading dimension of A. LDA >= max(1,N). | |
64 * | |
65 * B (input/output) REAL array, dimension (LDB, N) | |
66 * On entry, the matrix B in the pair (A,B). | |
67 * On exit, B has been overwritten. | |
68 * | |
69 * LDB (input) INTEGER | |
70 * The leading dimension of B. LDB >= max(1,N). | |
71 * | |
72 * ALPHAR (output) REAL array, dimension (N) | |
73 * ALPHAI (output) REAL array, dimension (N) | |
74 * BETA (output) REAL array, dimension (N) | |
75 * On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will | |
76 * be the generalized eigenvalues. If ALPHAI(j) is zero, then | |
77 * the j-th eigenvalue is real; if positive, then the j-th and | |
78 * (j+1)-st eigenvalues are a complex conjugate pair, with | |
79 * ALPHAI(j+1) negative. | |
80 * | |
81 * Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) | |
82 * may easily over- or underflow, and BETA(j) may even be zero. | |
83 * Thus, the user should avoid naively computing the ratio | |
84 * alpha/beta. However, ALPHAR and ALPHAI will be always less | |
85 * than and usually comparable with norm(A) in magnitude, and | |
86 * BETA always less than and usually comparable with norm(B). | |
87 * | |
88 * VL (output) REAL array, dimension (LDVL,N) | |
89 * If JOBVL = 'V', the left eigenvectors u(j) are stored one | |
90 * after another in the columns of VL, in the same order as | |
91 * their eigenvalues. If the j-th eigenvalue is real, then | |
92 * u(j) = VL(:,j), the j-th column of VL. If the j-th and | |
93 * (j+1)-th eigenvalues form a complex conjugate pair, then | |
94 * u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). | |
95 * Each eigenvector is scaled so the largest component has | |
96 * abs(real part)+abs(imag. part)=1. | |
97 * Not referenced if JOBVL = 'N'. | |
98 * | |
99 * LDVL (input) INTEGER | |
100 * The leading dimension of the matrix VL. LDVL >= 1, and | |
101 * if JOBVL = 'V', LDVL >= N. | |
102 * | |
103 * VR (output) REAL array, dimension (LDVR,N) | |
104 * If JOBVR = 'V', the right eigenvectors v(j) are stored one | |
105 * after another in the columns of VR, in the same order as | |
106 * their eigenvalues. If the j-th eigenvalue is real, then | |
107 * v(j) = VR(:,j), the j-th column of VR. If the j-th and | |
108 * (j+1)-th eigenvalues form a complex conjugate pair, then | |
109 * v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). | |
110 * Each eigenvector is scaled so the largest component has | |
111 * abs(real part)+abs(imag. part)=1. | |
112 * Not referenced if JOBVR = 'N'. | |
113 * | |
114 * LDVR (input) INTEGER | |
115 * The leading dimension of the matrix VR. LDVR >= 1, and | |
116 * if JOBVR = 'V', LDVR >= N. | |
117 * | |
118 * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) | |
119 * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. | |
120 * | |
121 * LWORK (input) INTEGER | |
122 * The dimension of the array WORK. LWORK >= max(1,8*N). | |
123 * For good performance, LWORK must generally be larger. | |
124 * | |
125 * If LWORK = -1, then a workspace query is assumed; the routine | |
126 * only calculates the optimal size of the WORK array, returns | |
127 * this value as the first entry of the WORK array, and no error | |
128 * message related to LWORK is issued by XERBLA. | |
129 * | |
130 * INFO (output) INTEGER | |
131 * = 0: successful exit | |
132 * < 0: if INFO = -i, the i-th argument had an illegal value. | |
133 * = 1,...,N: | |
134 * The QZ iteration failed. No eigenvectors have been | |
135 * calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) | |
136 * should be correct for j=INFO+1,...,N. | |
137 * > N: =N+1: other than QZ iteration failed in SHGEQZ. | |
138 * =N+2: error return from STGEVC. | |
139 * | |
140 * ===================================================================== | |
141 * | |
142 * .. Parameters .. | |
143 REAL ZERO, ONE | |
144 PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) | |
145 * .. | |
146 * .. Local Scalars .. | |
147 LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY | |
148 CHARACTER CHTEMP | |
149 INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO, | |
150 $ IN, IRIGHT, IROWS, ITAU, IWRK, JC, JR, MAXWRK, | |
151 $ MINWRK | |
152 REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, | |
153 $ SMLNUM, TEMP | |
154 * .. | |
155 * .. Local Arrays .. | |
156 LOGICAL LDUMMA( 1 ) | |
157 * .. | |
158 * .. External Subroutines .. | |
159 EXTERNAL SGEQRF, SGGBAK, SGGBAL, SGGHRD, SHGEQZ, SLABAD, | |
160 $ SLACPY, SLASCL, SLASET, SORGQR, SORMQR, STGEVC, | |
161 $ XERBLA | |
162 * .. | |
163 * .. External Functions .. | |
164 LOGICAL LSAME | |
165 INTEGER ILAENV | |
166 REAL SLAMCH, SLANGE | |
167 EXTERNAL LSAME, ILAENV, SLAMCH, SLANGE | |
168 * .. | |
169 * .. Intrinsic Functions .. | |
170 INTRINSIC ABS, MAX, SQRT | |
171 * .. | |
172 * .. Executable Statements .. | |
173 * | |
174 * Decode the input arguments | |
175 * | |
176 IF( LSAME( JOBVL, 'N' ) ) THEN | |
177 IJOBVL = 1 | |
178 ILVL = .FALSE. | |
179 ELSE IF( LSAME( JOBVL, 'V' ) ) THEN | |
180 IJOBVL = 2 | |
181 ILVL = .TRUE. | |
182 ELSE | |
183 IJOBVL = -1 | |
184 ILVL = .FALSE. | |
185 END IF | |
186 * | |
187 IF( LSAME( JOBVR, 'N' ) ) THEN | |
188 IJOBVR = 1 | |
189 ILVR = .FALSE. | |
190 ELSE IF( LSAME( JOBVR, 'V' ) ) THEN | |
191 IJOBVR = 2 | |
192 ILVR = .TRUE. | |
193 ELSE | |
194 IJOBVR = -1 | |
195 ILVR = .FALSE. | |
196 END IF | |
197 ILV = ILVL .OR. ILVR | |
198 * | |
199 * Test the input arguments | |
200 * | |
201 INFO = 0 | |
202 LQUERY = ( LWORK.EQ.-1 ) | |
203 IF( IJOBVL.LE.0 ) THEN | |
204 INFO = -1 | |
205 ELSE IF( IJOBVR.LE.0 ) THEN | |
206 INFO = -2 | |
207 ELSE IF( N.LT.0 ) THEN | |
208 INFO = -3 | |
209 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN | |
210 INFO = -5 | |
211 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN | |
212 INFO = -7 | |
213 ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN | |
214 INFO = -12 | |
215 ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN | |
216 INFO = -14 | |
217 END IF | |
218 * | |
219 * Compute workspace | |
220 * (Note: Comments in the code beginning "Workspace:" describe the | |
221 * minimal amount of workspace needed at that point in the code, | |
222 * as well as the preferred amount for good performance. | |
223 * NB refers to the optimal block size for the immediately | |
224 * following subroutine, as returned by ILAENV. The workspace is | |
225 * computed assuming ILO = 1 and IHI = N, the worst case.) | |
226 * | |
227 IF( INFO.EQ.0 ) THEN | |
228 MINWRK = MAX( 1, 8*N ) | |
229 MAXWRK = MAX( 1, N*( 7 + | |
230 $ ILAENV( 1, 'SGEQRF', ' ', N, 1, N, 0 ) ) ) | |
231 MAXWRK = MAX( MAXWRK, N*( 7 + | |
232 $ ILAENV( 1, 'SORMQR', ' ', N, 1, N, 0 ) ) ) | |
233 IF( ILVL ) THEN | |
234 MAXWRK = MAX( MAXWRK, N*( 7 + | |
235 $ ILAENV( 1, 'SORGQR', ' ', N, 1, N, -1 ) ) ) | |
236 END IF | |
237 WORK( 1 ) = MAXWRK | |
238 * | |
239 IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) | |
240 $ INFO = -16 | |
241 END IF | |
242 * | |
243 IF( INFO.NE.0 ) THEN | |
244 CALL XERBLA( 'SGGEV ', -INFO ) | |
245 RETURN | |
246 ELSE IF( LQUERY ) THEN | |
247 RETURN | |
248 END IF | |
249 * | |
250 * Quick return if possible | |
251 * | |
252 IF( N.EQ.0 ) | |
253 $ RETURN | |
254 * | |
255 * Get machine constants | |
256 * | |
257 EPS = SLAMCH( 'P' ) | |
258 SMLNUM = SLAMCH( 'S' ) | |
259 BIGNUM = ONE / SMLNUM | |
260 CALL SLABAD( SMLNUM, BIGNUM ) | |
261 SMLNUM = SQRT( SMLNUM ) / EPS | |
262 BIGNUM = ONE / SMLNUM | |
263 * | |
264 * Scale A if max element outside range [SMLNUM,BIGNUM] | |
265 * | |
266 ANRM = SLANGE( 'M', N, N, A, LDA, WORK ) | |
267 ILASCL = .FALSE. | |
268 IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN | |
269 ANRMTO = SMLNUM | |
270 ILASCL = .TRUE. | |
271 ELSE IF( ANRM.GT.BIGNUM ) THEN | |
272 ANRMTO = BIGNUM | |
273 ILASCL = .TRUE. | |
274 END IF | |
275 IF( ILASCL ) | |
276 $ CALL SLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR ) | |
277 * | |
278 * Scale B if max element outside range [SMLNUM,BIGNUM] | |
279 * | |
280 BNRM = SLANGE( 'M', N, N, B, LDB, WORK ) | |
281 ILBSCL = .FALSE. | |
282 IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN | |
283 BNRMTO = SMLNUM | |
284 ILBSCL = .TRUE. | |
285 ELSE IF( BNRM.GT.BIGNUM ) THEN | |
286 BNRMTO = BIGNUM | |
287 ILBSCL = .TRUE. | |
288 END IF | |
289 IF( ILBSCL ) | |
290 $ CALL SLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR ) | |
291 * | |
292 * Permute the matrices A, B to isolate eigenvalues if possible | |
293 * (Workspace: need 6*N) | |
294 * | |
295 ILEFT = 1 | |
296 IRIGHT = N + 1 | |
297 IWRK = IRIGHT + N | |
298 CALL SGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ), | |
299 $ WORK( IRIGHT ), WORK( IWRK ), IERR ) | |
300 * | |
301 * Reduce B to triangular form (QR decomposition of B) | |
302 * (Workspace: need N, prefer N*NB) | |
303 * | |
304 IROWS = IHI + 1 - ILO | |
305 IF( ILV ) THEN | |
306 ICOLS = N + 1 - ILO | |
307 ELSE | |
308 ICOLS = IROWS | |
309 END IF | |
310 ITAU = IWRK | |
311 IWRK = ITAU + IROWS | |
312 CALL SGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ), | |
313 $ WORK( IWRK ), LWORK+1-IWRK, IERR ) | |
314 * | |
315 * Apply the orthogonal transformation to matrix A | |
316 * (Workspace: need N, prefer N*NB) | |
317 * | |
318 CALL SORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB, | |
319 $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ), | |
320 $ LWORK+1-IWRK, IERR ) | |
321 * | |
322 * Initialize VL | |
323 * (Workspace: need N, prefer N*NB) | |
324 * | |
325 IF( ILVL ) THEN | |
326 CALL SLASET( 'Full', N, N, ZERO, ONE, VL, LDVL ) | |
327 IF( IROWS.GT.1 ) THEN | |
328 CALL SLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB, | |
329 $ VL( ILO+1, ILO ), LDVL ) | |
330 END IF | |
331 CALL SORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL, | |
332 $ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR ) | |
333 END IF | |
334 * | |
335 * Initialize VR | |
336 * | |
337 IF( ILVR ) | |
338 $ CALL SLASET( 'Full', N, N, ZERO, ONE, VR, LDVR ) | |
339 * | |
340 * Reduce to generalized Hessenberg form | |
341 * (Workspace: none needed) | |
342 * | |
343 IF( ILV ) THEN | |
344 * | |
345 * Eigenvectors requested -- work on whole matrix. | |
346 * | |
347 CALL SGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL, | |
348 $ LDVL, VR, LDVR, IERR ) | |
349 ELSE | |
350 CALL SGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA, | |
351 $ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR ) | |
352 END IF | |
353 * | |
354 * Perform QZ algorithm (Compute eigenvalues, and optionally, the | |
355 * Schur forms and Schur vectors) | |
356 * (Workspace: need N) | |
357 * | |
358 IWRK = ITAU | |
359 IF( ILV ) THEN | |
360 CHTEMP = 'S' | |
361 ELSE | |
362 CHTEMP = 'E' | |
363 END IF | |
364 CALL SHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, | |
365 $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, | |
366 $ WORK( IWRK ), LWORK+1-IWRK, IERR ) | |
367 IF( IERR.NE.0 ) THEN | |
368 IF( IERR.GT.0 .AND. IERR.LE.N ) THEN | |
369 INFO = IERR | |
370 ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN | |
371 INFO = IERR - N | |
372 ELSE | |
373 INFO = N + 1 | |
374 END IF | |
375 GO TO 110 | |
376 END IF | |
377 * | |
378 * Compute Eigenvectors | |
379 * (Workspace: need 6*N) | |
380 * | |
381 IF( ILV ) THEN | |
382 IF( ILVL ) THEN | |
383 IF( ILVR ) THEN | |
384 CHTEMP = 'B' | |
385 ELSE | |
386 CHTEMP = 'L' | |
387 END IF | |
388 ELSE | |
389 CHTEMP = 'R' | |
390 END IF | |
391 CALL STGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL, | |
392 $ VR, LDVR, N, IN, WORK( IWRK ), IERR ) | |
393 IF( IERR.NE.0 ) THEN | |
394 INFO = N + 2 | |
395 GO TO 110 | |
396 END IF | |
397 * | |
398 * Undo balancing on VL and VR and normalization | |
399 * (Workspace: none needed) | |
400 * | |
401 IF( ILVL ) THEN | |
402 CALL SGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ), | |
403 $ WORK( IRIGHT ), N, VL, LDVL, IERR ) | |
404 DO 50 JC = 1, N | |
405 IF( ALPHAI( JC ).LT.ZERO ) | |
406 $ GO TO 50 | |
407 TEMP = ZERO | |
408 IF( ALPHAI( JC ).EQ.ZERO ) THEN | |
409 DO 10 JR = 1, N | |
410 TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) ) | |
411 10 CONTINUE | |
412 ELSE | |
413 DO 20 JR = 1, N | |
414 TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+ | |
415 $ ABS( VL( JR, JC+1 ) ) ) | |
416 20 CONTINUE | |
417 END IF | |
418 IF( TEMP.LT.SMLNUM ) | |
419 $ GO TO 50 | |
420 TEMP = ONE / TEMP | |
421 IF( ALPHAI( JC ).EQ.ZERO ) THEN | |
422 DO 30 JR = 1, N | |
423 VL( JR, JC ) = VL( JR, JC )*TEMP | |
424 30 CONTINUE | |
425 ELSE | |
426 DO 40 JR = 1, N | |
427 VL( JR, JC ) = VL( JR, JC )*TEMP | |
428 VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP | |
429 40 CONTINUE | |
430 END IF | |
431 50 CONTINUE | |
432 END IF | |
433 IF( ILVR ) THEN | |
434 CALL SGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ), | |
435 $ WORK( IRIGHT ), N, VR, LDVR, IERR ) | |
436 DO 100 JC = 1, N | |
437 IF( ALPHAI( JC ).LT.ZERO ) | |
438 $ GO TO 100 | |
439 TEMP = ZERO | |
440 IF( ALPHAI( JC ).EQ.ZERO ) THEN | |
441 DO 60 JR = 1, N | |
442 TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) ) | |
443 60 CONTINUE | |
444 ELSE | |
445 DO 70 JR = 1, N | |
446 TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+ | |
447 $ ABS( VR( JR, JC+1 ) ) ) | |
448 70 CONTINUE | |
449 END IF | |
450 IF( TEMP.LT.SMLNUM ) | |
451 $ GO TO 100 | |
452 TEMP = ONE / TEMP | |
453 IF( ALPHAI( JC ).EQ.ZERO ) THEN | |
454 DO 80 JR = 1, N | |
455 VR( JR, JC ) = VR( JR, JC )*TEMP | |
456 80 CONTINUE | |
457 ELSE | |
458 DO 90 JR = 1, N | |
459 VR( JR, JC ) = VR( JR, JC )*TEMP | |
460 VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP | |
461 90 CONTINUE | |
462 END IF | |
463 100 CONTINUE | |
464 END IF | |
465 * | |
466 * End of eigenvector calculation | |
467 * | |
468 END IF | |
469 * | |
470 * Undo scaling if necessary | |
471 * | |
472 IF( ILASCL ) THEN | |
473 CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR ) | |
474 CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR ) | |
475 END IF | |
476 * | |
477 IF( ILBSCL ) THEN | |
478 CALL SLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR ) | |
479 END IF | |
480 * | |
481 110 CONTINUE | |
482 * | |
483 WORK( 1 ) = MAXWRK | |
484 * | |
485 RETURN | |
486 * | |
487 * End of SGGEV | |
488 * | |
489 END |