comparison libcruft/lapack/sggev.f @ 8408:15c23c1c3c18

add missing blas & lapack sources
author Jaroslav Hajek <highegg@gmail.com>
date Mon, 15 Dec 2008 13:49:16 +0100
parents
children
comparison
equal deleted inserted replaced
8407:096c22ce2b0b 8408:15c23c1c3c18
1 SUBROUTINE SGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
2 $ BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
3 *
4 * -- LAPACK driver routine (version 3.1) --
5 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
6 * November 2006
7 *
8 * .. Scalar Arguments ..
9 CHARACTER JOBVL, JOBVR
10 INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
11 * ..
12 * .. Array Arguments ..
13 REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
14 $ B( LDB, * ), BETA( * ), VL( LDVL, * ),
15 $ VR( LDVR, * ), WORK( * )
16 * ..
17 *
18 * Purpose
19 * =======
20 *
21 * SGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B)
22 * the generalized eigenvalues, and optionally, the left and/or right
23 * generalized eigenvectors.
24 *
25 * A generalized eigenvalue for a pair of matrices (A,B) is a scalar
26 * lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
27 * singular. It is usually represented as the pair (alpha,beta), as
28 * there is a reasonable interpretation for beta=0, and even for both
29 * being zero.
30 *
31 * The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
32 * of (A,B) satisfies
33 *
34 * A * v(j) = lambda(j) * B * v(j).
35 *
36 * The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
37 * of (A,B) satisfies
38 *
39 * u(j)**H * A = lambda(j) * u(j)**H * B .
40 *
41 * where u(j)**H is the conjugate-transpose of u(j).
42 *
43 *
44 * Arguments
45 * =========
46 *
47 * JOBVL (input) CHARACTER*1
48 * = 'N': do not compute the left generalized eigenvectors;
49 * = 'V': compute the left generalized eigenvectors.
50 *
51 * JOBVR (input) CHARACTER*1
52 * = 'N': do not compute the right generalized eigenvectors;
53 * = 'V': compute the right generalized eigenvectors.
54 *
55 * N (input) INTEGER
56 * The order of the matrices A, B, VL, and VR. N >= 0.
57 *
58 * A (input/output) REAL array, dimension (LDA, N)
59 * On entry, the matrix A in the pair (A,B).
60 * On exit, A has been overwritten.
61 *
62 * LDA (input) INTEGER
63 * The leading dimension of A. LDA >= max(1,N).
64 *
65 * B (input/output) REAL array, dimension (LDB, N)
66 * On entry, the matrix B in the pair (A,B).
67 * On exit, B has been overwritten.
68 *
69 * LDB (input) INTEGER
70 * The leading dimension of B. LDB >= max(1,N).
71 *
72 * ALPHAR (output) REAL array, dimension (N)
73 * ALPHAI (output) REAL array, dimension (N)
74 * BETA (output) REAL array, dimension (N)
75 * On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
76 * be the generalized eigenvalues. If ALPHAI(j) is zero, then
77 * the j-th eigenvalue is real; if positive, then the j-th and
78 * (j+1)-st eigenvalues are a complex conjugate pair, with
79 * ALPHAI(j+1) negative.
80 *
81 * Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
82 * may easily over- or underflow, and BETA(j) may even be zero.
83 * Thus, the user should avoid naively computing the ratio
84 * alpha/beta. However, ALPHAR and ALPHAI will be always less
85 * than and usually comparable with norm(A) in magnitude, and
86 * BETA always less than and usually comparable with norm(B).
87 *
88 * VL (output) REAL array, dimension (LDVL,N)
89 * If JOBVL = 'V', the left eigenvectors u(j) are stored one
90 * after another in the columns of VL, in the same order as
91 * their eigenvalues. If the j-th eigenvalue is real, then
92 * u(j) = VL(:,j), the j-th column of VL. If the j-th and
93 * (j+1)-th eigenvalues form a complex conjugate pair, then
94 * u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
95 * Each eigenvector is scaled so the largest component has
96 * abs(real part)+abs(imag. part)=1.
97 * Not referenced if JOBVL = 'N'.
98 *
99 * LDVL (input) INTEGER
100 * The leading dimension of the matrix VL. LDVL >= 1, and
101 * if JOBVL = 'V', LDVL >= N.
102 *
103 * VR (output) REAL array, dimension (LDVR,N)
104 * If JOBVR = 'V', the right eigenvectors v(j) are stored one
105 * after another in the columns of VR, in the same order as
106 * their eigenvalues. If the j-th eigenvalue is real, then
107 * v(j) = VR(:,j), the j-th column of VR. If the j-th and
108 * (j+1)-th eigenvalues form a complex conjugate pair, then
109 * v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
110 * Each eigenvector is scaled so the largest component has
111 * abs(real part)+abs(imag. part)=1.
112 * Not referenced if JOBVR = 'N'.
113 *
114 * LDVR (input) INTEGER
115 * The leading dimension of the matrix VR. LDVR >= 1, and
116 * if JOBVR = 'V', LDVR >= N.
117 *
118 * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
119 * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
120 *
121 * LWORK (input) INTEGER
122 * The dimension of the array WORK. LWORK >= max(1,8*N).
123 * For good performance, LWORK must generally be larger.
124 *
125 * If LWORK = -1, then a workspace query is assumed; the routine
126 * only calculates the optimal size of the WORK array, returns
127 * this value as the first entry of the WORK array, and no error
128 * message related to LWORK is issued by XERBLA.
129 *
130 * INFO (output) INTEGER
131 * = 0: successful exit
132 * < 0: if INFO = -i, the i-th argument had an illegal value.
133 * = 1,...,N:
134 * The QZ iteration failed. No eigenvectors have been
135 * calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
136 * should be correct for j=INFO+1,...,N.
137 * > N: =N+1: other than QZ iteration failed in SHGEQZ.
138 * =N+2: error return from STGEVC.
139 *
140 * =====================================================================
141 *
142 * .. Parameters ..
143 REAL ZERO, ONE
144 PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
145 * ..
146 * .. Local Scalars ..
147 LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
148 CHARACTER CHTEMP
149 INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
150 $ IN, IRIGHT, IROWS, ITAU, IWRK, JC, JR, MAXWRK,
151 $ MINWRK
152 REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
153 $ SMLNUM, TEMP
154 * ..
155 * .. Local Arrays ..
156 LOGICAL LDUMMA( 1 )
157 * ..
158 * .. External Subroutines ..
159 EXTERNAL SGEQRF, SGGBAK, SGGBAL, SGGHRD, SHGEQZ, SLABAD,
160 $ SLACPY, SLASCL, SLASET, SORGQR, SORMQR, STGEVC,
161 $ XERBLA
162 * ..
163 * .. External Functions ..
164 LOGICAL LSAME
165 INTEGER ILAENV
166 REAL SLAMCH, SLANGE
167 EXTERNAL LSAME, ILAENV, SLAMCH, SLANGE
168 * ..
169 * .. Intrinsic Functions ..
170 INTRINSIC ABS, MAX, SQRT
171 * ..
172 * .. Executable Statements ..
173 *
174 * Decode the input arguments
175 *
176 IF( LSAME( JOBVL, 'N' ) ) THEN
177 IJOBVL = 1
178 ILVL = .FALSE.
179 ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
180 IJOBVL = 2
181 ILVL = .TRUE.
182 ELSE
183 IJOBVL = -1
184 ILVL = .FALSE.
185 END IF
186 *
187 IF( LSAME( JOBVR, 'N' ) ) THEN
188 IJOBVR = 1
189 ILVR = .FALSE.
190 ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
191 IJOBVR = 2
192 ILVR = .TRUE.
193 ELSE
194 IJOBVR = -1
195 ILVR = .FALSE.
196 END IF
197 ILV = ILVL .OR. ILVR
198 *
199 * Test the input arguments
200 *
201 INFO = 0
202 LQUERY = ( LWORK.EQ.-1 )
203 IF( IJOBVL.LE.0 ) THEN
204 INFO = -1
205 ELSE IF( IJOBVR.LE.0 ) THEN
206 INFO = -2
207 ELSE IF( N.LT.0 ) THEN
208 INFO = -3
209 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
210 INFO = -5
211 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
212 INFO = -7
213 ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
214 INFO = -12
215 ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
216 INFO = -14
217 END IF
218 *
219 * Compute workspace
220 * (Note: Comments in the code beginning "Workspace:" describe the
221 * minimal amount of workspace needed at that point in the code,
222 * as well as the preferred amount for good performance.
223 * NB refers to the optimal block size for the immediately
224 * following subroutine, as returned by ILAENV. The workspace is
225 * computed assuming ILO = 1 and IHI = N, the worst case.)
226 *
227 IF( INFO.EQ.0 ) THEN
228 MINWRK = MAX( 1, 8*N )
229 MAXWRK = MAX( 1, N*( 7 +
230 $ ILAENV( 1, 'SGEQRF', ' ', N, 1, N, 0 ) ) )
231 MAXWRK = MAX( MAXWRK, N*( 7 +
232 $ ILAENV( 1, 'SORMQR', ' ', N, 1, N, 0 ) ) )
233 IF( ILVL ) THEN
234 MAXWRK = MAX( MAXWRK, N*( 7 +
235 $ ILAENV( 1, 'SORGQR', ' ', N, 1, N, -1 ) ) )
236 END IF
237 WORK( 1 ) = MAXWRK
238 *
239 IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
240 $ INFO = -16
241 END IF
242 *
243 IF( INFO.NE.0 ) THEN
244 CALL XERBLA( 'SGGEV ', -INFO )
245 RETURN
246 ELSE IF( LQUERY ) THEN
247 RETURN
248 END IF
249 *
250 * Quick return if possible
251 *
252 IF( N.EQ.0 )
253 $ RETURN
254 *
255 * Get machine constants
256 *
257 EPS = SLAMCH( 'P' )
258 SMLNUM = SLAMCH( 'S' )
259 BIGNUM = ONE / SMLNUM
260 CALL SLABAD( SMLNUM, BIGNUM )
261 SMLNUM = SQRT( SMLNUM ) / EPS
262 BIGNUM = ONE / SMLNUM
263 *
264 * Scale A if max element outside range [SMLNUM,BIGNUM]
265 *
266 ANRM = SLANGE( 'M', N, N, A, LDA, WORK )
267 ILASCL = .FALSE.
268 IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
269 ANRMTO = SMLNUM
270 ILASCL = .TRUE.
271 ELSE IF( ANRM.GT.BIGNUM ) THEN
272 ANRMTO = BIGNUM
273 ILASCL = .TRUE.
274 END IF
275 IF( ILASCL )
276 $ CALL SLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
277 *
278 * Scale B if max element outside range [SMLNUM,BIGNUM]
279 *
280 BNRM = SLANGE( 'M', N, N, B, LDB, WORK )
281 ILBSCL = .FALSE.
282 IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
283 BNRMTO = SMLNUM
284 ILBSCL = .TRUE.
285 ELSE IF( BNRM.GT.BIGNUM ) THEN
286 BNRMTO = BIGNUM
287 ILBSCL = .TRUE.
288 END IF
289 IF( ILBSCL )
290 $ CALL SLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
291 *
292 * Permute the matrices A, B to isolate eigenvalues if possible
293 * (Workspace: need 6*N)
294 *
295 ILEFT = 1
296 IRIGHT = N + 1
297 IWRK = IRIGHT + N
298 CALL SGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
299 $ WORK( IRIGHT ), WORK( IWRK ), IERR )
300 *
301 * Reduce B to triangular form (QR decomposition of B)
302 * (Workspace: need N, prefer N*NB)
303 *
304 IROWS = IHI + 1 - ILO
305 IF( ILV ) THEN
306 ICOLS = N + 1 - ILO
307 ELSE
308 ICOLS = IROWS
309 END IF
310 ITAU = IWRK
311 IWRK = ITAU + IROWS
312 CALL SGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
313 $ WORK( IWRK ), LWORK+1-IWRK, IERR )
314 *
315 * Apply the orthogonal transformation to matrix A
316 * (Workspace: need N, prefer N*NB)
317 *
318 CALL SORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
319 $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
320 $ LWORK+1-IWRK, IERR )
321 *
322 * Initialize VL
323 * (Workspace: need N, prefer N*NB)
324 *
325 IF( ILVL ) THEN
326 CALL SLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
327 IF( IROWS.GT.1 ) THEN
328 CALL SLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
329 $ VL( ILO+1, ILO ), LDVL )
330 END IF
331 CALL SORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
332 $ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
333 END IF
334 *
335 * Initialize VR
336 *
337 IF( ILVR )
338 $ CALL SLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
339 *
340 * Reduce to generalized Hessenberg form
341 * (Workspace: none needed)
342 *
343 IF( ILV ) THEN
344 *
345 * Eigenvectors requested -- work on whole matrix.
346 *
347 CALL SGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
348 $ LDVL, VR, LDVR, IERR )
349 ELSE
350 CALL SGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
351 $ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
352 END IF
353 *
354 * Perform QZ algorithm (Compute eigenvalues, and optionally, the
355 * Schur forms and Schur vectors)
356 * (Workspace: need N)
357 *
358 IWRK = ITAU
359 IF( ILV ) THEN
360 CHTEMP = 'S'
361 ELSE
362 CHTEMP = 'E'
363 END IF
364 CALL SHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
365 $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
366 $ WORK( IWRK ), LWORK+1-IWRK, IERR )
367 IF( IERR.NE.0 ) THEN
368 IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
369 INFO = IERR
370 ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
371 INFO = IERR - N
372 ELSE
373 INFO = N + 1
374 END IF
375 GO TO 110
376 END IF
377 *
378 * Compute Eigenvectors
379 * (Workspace: need 6*N)
380 *
381 IF( ILV ) THEN
382 IF( ILVL ) THEN
383 IF( ILVR ) THEN
384 CHTEMP = 'B'
385 ELSE
386 CHTEMP = 'L'
387 END IF
388 ELSE
389 CHTEMP = 'R'
390 END IF
391 CALL STGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
392 $ VR, LDVR, N, IN, WORK( IWRK ), IERR )
393 IF( IERR.NE.0 ) THEN
394 INFO = N + 2
395 GO TO 110
396 END IF
397 *
398 * Undo balancing on VL and VR and normalization
399 * (Workspace: none needed)
400 *
401 IF( ILVL ) THEN
402 CALL SGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
403 $ WORK( IRIGHT ), N, VL, LDVL, IERR )
404 DO 50 JC = 1, N
405 IF( ALPHAI( JC ).LT.ZERO )
406 $ GO TO 50
407 TEMP = ZERO
408 IF( ALPHAI( JC ).EQ.ZERO ) THEN
409 DO 10 JR = 1, N
410 TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
411 10 CONTINUE
412 ELSE
413 DO 20 JR = 1, N
414 TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
415 $ ABS( VL( JR, JC+1 ) ) )
416 20 CONTINUE
417 END IF
418 IF( TEMP.LT.SMLNUM )
419 $ GO TO 50
420 TEMP = ONE / TEMP
421 IF( ALPHAI( JC ).EQ.ZERO ) THEN
422 DO 30 JR = 1, N
423 VL( JR, JC ) = VL( JR, JC )*TEMP
424 30 CONTINUE
425 ELSE
426 DO 40 JR = 1, N
427 VL( JR, JC ) = VL( JR, JC )*TEMP
428 VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
429 40 CONTINUE
430 END IF
431 50 CONTINUE
432 END IF
433 IF( ILVR ) THEN
434 CALL SGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
435 $ WORK( IRIGHT ), N, VR, LDVR, IERR )
436 DO 100 JC = 1, N
437 IF( ALPHAI( JC ).LT.ZERO )
438 $ GO TO 100
439 TEMP = ZERO
440 IF( ALPHAI( JC ).EQ.ZERO ) THEN
441 DO 60 JR = 1, N
442 TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
443 60 CONTINUE
444 ELSE
445 DO 70 JR = 1, N
446 TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
447 $ ABS( VR( JR, JC+1 ) ) )
448 70 CONTINUE
449 END IF
450 IF( TEMP.LT.SMLNUM )
451 $ GO TO 100
452 TEMP = ONE / TEMP
453 IF( ALPHAI( JC ).EQ.ZERO ) THEN
454 DO 80 JR = 1, N
455 VR( JR, JC ) = VR( JR, JC )*TEMP
456 80 CONTINUE
457 ELSE
458 DO 90 JR = 1, N
459 VR( JR, JC ) = VR( JR, JC )*TEMP
460 VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
461 90 CONTINUE
462 END IF
463 100 CONTINUE
464 END IF
465 *
466 * End of eigenvector calculation
467 *
468 END IF
469 *
470 * Undo scaling if necessary
471 *
472 IF( ILASCL ) THEN
473 CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
474 CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
475 END IF
476 *
477 IF( ILBSCL ) THEN
478 CALL SLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
479 END IF
480 *
481 110 CONTINUE
482 *
483 WORK( 1 ) = MAXWRK
484 *
485 RETURN
486 *
487 * End of SGGEV
488 *
489 END