Mercurial > hg > octave-lyh
comparison scripts/statistics/base/quantile.m @ 9051:1bf0ce0930be
Grammar check TexInfo in all .m files
Cleanup documentation sources to follow a few consistent rules.
Spellcheck was NOT done. (but will be in another changeset)
author | Rik <rdrider0-list@yahoo.com> |
---|---|
date | Fri, 27 Mar 2009 22:31:03 -0700 |
parents | eb63fbe60fab |
children | 634274aaa183 |
comparison
equal
deleted
inserted
replaced
9044:656ad518f385 | 9051:1bf0ce0930be |
---|---|
19 ## -*- texinfo -*- | 19 ## -*- texinfo -*- |
20 ## @deftypefn {Function File} {@var{q} =} quantile (@var{x}, @var{p}) | 20 ## @deftypefn {Function File} {@var{q} =} quantile (@var{x}, @var{p}) |
21 ## @deftypefnx {Function File} {@var{q} =} quantile (@var{x}, @var{p}, @var{dim}) | 21 ## @deftypefnx {Function File} {@var{q} =} quantile (@var{x}, @var{p}, @var{dim}) |
22 ## @deftypefnx {Function File} {@var{q} =} quantile (@var{x}, @var{p}, @var{dim}, @var{method}) | 22 ## @deftypefnx {Function File} {@var{q} =} quantile (@var{x}, @var{p}, @var{dim}, @var{method}) |
23 ## For a sample, @var{x}, calculate the quantiles, @var{q}, corresponding to | 23 ## For a sample, @var{x}, calculate the quantiles, @var{q}, corresponding to |
24 ## the cumulative probability values in @var{p}. All non-numeric values (NaNs) of | 24 ## the cumulative probability values in @var{p}. All non-numeric values (NaNs) of |
25 ## @var{x} are ignored. | 25 ## @var{x} are ignored. |
26 ## | 26 ## |
27 ## If @var{x} is a matrix, compute the quantiles for each column and | 27 ## If @var{x} is a matrix, compute the quantiles for each column and |
28 ## return them in a matrix, such that the i-th row of @var{q} contains | 28 ## return them in a matrix, such that the i-th row of @var{q} contains |
29 ## the @var{p}(i)th quantiles of each column of @var{x}. | 29 ## the @var{p}(i)th quantiles of each column of @var{x}. |
30 ## | 30 ## |
31 ## The optional argument @var{dim} determines the dimension along which | 31 ## The optional argument @var{dim} determines the dimension along which |
32 ## the percentiles are calculated. If @var{dim} is omitted, and @var{x} is | 32 ## the percentiles are calculated. If @var{dim} is omitted, and @var{x} is |
33 ## a vector or matrix, it defaults to 1 (column wise quantiles). In the | 33 ## a vector or matrix, it defaults to 1 (column wise quantiles). In the |
34 ## instance that @var{x} is a N-d array, @var{dim} defaults to the first | 34 ## instance that @var{x} is a N-d array, @var{dim} defaults to the first |
35 ## dimension whose size greater than unity. | 35 ## dimension whose size greater than unity. |
36 ## | 36 ## |
37 ## The methods available to calculate sample quantiles are the nine methods | 37 ## The methods available to calculate sample quantiles are the nine methods |
38 ## used by R (http://www.r-project.org/). The default value is METHOD = 5. | 38 ## used by R (http://www.r-project.org/). The default value is METHOD = 5. |
39 ## | 39 ## |
40 ## Discontinuous sample quantile methods 1, 2, and 3 | 40 ## Discontinuous sample quantile methods 1, 2, and 3 |
41 ## | 41 ## |
42 ## @enumerate 1 | 42 ## @enumerate 1 |
43 ## @item Method 1: Inverse of empirical distribution function. | 43 ## @item Method 1: Inverse of empirical distribution function. |
52 ## @item Method 4: p(k) = k / n. That is, linear interpolation of the empirical cdf. | 52 ## @item Method 4: p(k) = k / n. That is, linear interpolation of the empirical cdf. |
53 ## @item Method 5: p(k) = (k - 0.5) / n. That is a piecewise linear function where | 53 ## @item Method 5: p(k) = (k - 0.5) / n. That is a piecewise linear function where |
54 ## the knots are the values midway through the steps of the empirical cdf. | 54 ## the knots are the values midway through the steps of the empirical cdf. |
55 ## @item Method 6: p(k) = k / (n + 1). | 55 ## @item Method 6: p(k) = k / (n + 1). |
56 ## @item Method 7: p(k) = (k - 1) / (n - 1). | 56 ## @item Method 7: p(k) = (k - 1) / (n - 1). |
57 ## @item Method 8: p(k) = (k - 1/3) / (n + 1/3). The resulting quantile estimates | 57 ## @item Method 8: p(k) = (k - 1/3) / (n + 1/3). The resulting quantile estimates |
58 ## are approximately median-unbiased regardless of the distribution of @var{x}. | 58 ## are approximately median-unbiased regardless of the distribution of @var{x}. |
59 ## @item Method 9: p(k) = (k - 3/8) / (n + 1/4). The resulting quantile estimates | 59 ## @item Method 9: p(k) = (k - 3/8) / (n + 1/4). The resulting quantile estimates |
60 ## are approximately unbiased for the expected order statistics if @var{x} is | 60 ## are approximately unbiased for the expected order statistics if @var{x} is |
61 ## normally distributed. | 61 ## normally distributed. |
62 ## @end enumerate | 62 ## @end enumerate |
63 ## | 63 ## |
64 ## Hyndman and Fan (1996) recommend method 8. Maxima, S, and R | 64 ## Hyndman and Fan (1996) recommend method 8. Maxima, S, and R |
65 ## (versions prior to 2.0.0) use 7 as their default. Minitab and SPSS | 65 ## (versions prior to 2.0.0) use 7 as their default. Minitab and SPSS |
66 ## use method 6. Matlab uses method 5. | 66 ## use method 6. @sc{matlab} uses method 5. |
67 ## | 67 ## |
68 ## References: | 68 ## References: |
69 ## | 69 ## |
70 ## @itemize @bullet | 70 ## @itemize @bullet |
71 ## @item Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New | 71 ## @item Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New |