Mercurial > hg > octave-lyh
comparison scripts/signal/arch_test.m @ 3499:3e3e14ad5149
[project @ 2000-01-31 05:18:07 by jwe]
author | jwe |
---|---|
date | Mon, 31 Jan 2000 05:18:13 +0000 |
parents | d25bc039237b |
children | e54140b9ebe1 |
comparison
equal
deleted
inserted
replaced
3498:e391aeef2b3c | 3499:3e3e14ad5149 |
---|---|
27 ## conditional heteroscedascity against the alternative of CH(@var{p}). | 27 ## conditional heteroscedascity against the alternative of CH(@var{p}). |
28 ## | 28 ## |
29 ## I.e., the model is | 29 ## I.e., the model is |
30 ## | 30 ## |
31 ## @example | 31 ## @example |
32 ## y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t), | 32 ## y(t) = b(1) * x(t,1) + @dots{} + b(k) * x(t,k) + e(t), |
33 ## @end example | 33 ## @end example |
34 ## | 34 ## |
35 ## @noindent | 35 ## @noindent |
36 ## given @var{y} up to @var{t}-1 and @var{x} up to @var{t}, | 36 ## given @var{y} up to @math{t-1} and @var{x} up to @math{t}, |
37 ## @var{e}(@var{t}) is @var{N}(0, @var{h}(@var{t})) with | 37 ## @math{e}(t) is @math{N(0, h(t))} with |
38 ## | 38 ## |
39 ## @example | 39 ## @example |
40 ## h(t) = v + a(1) * e(t-1)^2 + ... + a(p) * e(t-p)^2, | 40 ## h(t) = v + a(1) * e(t-1)^2 + @dots{} + a(p) * e(t-p)^2, |
41 ## @end example | 41 ## @end example |
42 ## | 42 ## |
43 ## @noindent | 43 ## @noindent |
44 ## and the null is @var{a}(1) == ... == @var{a}(@var{p}) == 0. | 44 ## and the null is @math{a(1)} == @dots{} == @math{a(p)} == 0. |
45 ## | 45 ## |
46 ## If the second argument is a scalar integer, @var{k}, perform the same | 46 ## If the second argument is a scalar integer, @math{k}, perform the same |
47 ## test in a linear autoregression model of order @var{k}, i.e., with | 47 ## test in a linear autoregression model of order @math{k}, i.e., with |
48 ## | 48 ## |
49 ## @example | 49 ## @example |
50 ## [1, y(t-1), ..., y(t-@var{k})] | 50 ## [1, y(t-1), @dots{}, y(t-@var{k})] |
51 ## @end example | 51 ## @end example |
52 ## | 52 ## |
53 ## @noindent | 53 ## @noindent |
54 ## as the @var{t}-th row of @var{x}. | 54 ## as the @math{t}-th row of @var{x}. |
55 ## | 55 ## |
56 ## Under the null, LM approximately has a chisquare distribution with | 56 ## Under the null, LM approximately has a chisquare distribution with |
57 ## @var{p} degrees of freedom and @var{pval} is the @var{p}-value (1 | 57 ## @var{p} degrees of freedom and @var{pval} is the @math{p}-value (1 |
58 ## minus the CDF of this distribution at LM) of the test. | 58 ## minus the CDF of this distribution at LM) of the test. |
59 ## | 59 ## |
60 ## If no output argument is given, the @var{p}-value is displayed. | 60 ## If no output argument is given, the @math{p}-value is displayed. |
61 ## @end deftypefn | 61 ## @end deftypefn |
62 | 62 |
63 ## Author: KH <Kurt.Hornik@ci.tuwien.ac.at> | 63 ## Author: KH <Kurt.Hornik@ci.tuwien.ac.at> |
64 ## Description: Test for conditional heteroscedascity | 64 ## Description: Test for conditional heteroscedascity |
65 | 65 |