comparison scripts/optimization/fsolve.m @ 8306:43795cf108d0

initial implementation of fsolve remove old fsolve code
author Jaroslav Hajek <highegg@gmail.com>
date Sun, 28 Sep 2008 21:09:35 +0200
parents
children a762d9daa700
comparison
equal deleted inserted replaced
8305:368b504777a8 8306:43795cf108d0
1 ## Copyright (C) 2008 VZLU Prague, a.s.
2 ##
3 ## This file is part of Octave.
4 ##
5 ## Octave is free software; you can redistribute it and/or modify it
6 ## under the terms of the GNU General Public License as published by
7 ## the Free Software Foundation; either version 3 of the License, or (at
8 ## your option) any later version.
9 ##
10 ## Octave is distributed in the hope that it will be useful, but
11 ## WITHOUT ANY WARRANTY; without even the implied warranty of
12 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 ## General Public License for more details.
14 ##
15 ## You should have received a copy of the GNU General Public License
16 ## along with Octave; see the file COPYING. If not, see
17 ## <http://www.gnu.org/licenses/>.
18 ##
19 ## Author: Jaroslav Hajek <highegg@gmail.com>
20
21 # -*- texinfo -*-
22 # @deftypefn{Function File} {} fsolve(@var{fcn}, @var{x0}, @var{options})
23 # @deftypefnx{Function File} {[@var{x}, @var{fvec}, @var{info}, @var{output}, @var{fjac}]} = fsolve (@var{fcn}, @dots{})
24 # Solves a system of nonlinear equations defined by the function @var{fcn}.
25 # @var{fcn} should accepts a vector (array) defining the unknown variables,
26 # and return a vector of left-hand sides of the equations. Right-hand sides
27 # are defined to be zeros.
28 # In other words, this function attempts to determine a vector @var{X} such
29 # that @code{@var{fcn}(@var{X})} gives (approximately) all zeros.
30 # @var{x0} determines a starting guess. The shape of @var{x0} is preserved
31 # in all calls to @var{fcn}, but otherwise it is treated as a column vector.
32 # @var{options} is a structure specifying additional options. Currently, fsolve
33 # recognizes these options: FunValCheck, OutputFcn, TolX, TolFun, MaxIter,
34 # MaxFunEvals and Jacobian.
35 #
36 # If Jacobian is 'on', it specifies that @var{fcn}, called with 2 output arguments,
37 # also returns the Jacobian matrix of right-hand sides at the requested point.
38 # TolX specifies the termination tolerance in the unknown variables, while
39 # TolFun is a tolerance for equations. Default is @code{1e1*eps}
40 # for TolX and @code{1e2*eps} for TolFun.
41 # For description of the other options, see @code{optimset}.
42 #
43 # On return, @var{fval} contains the value of the function @var{fcn}
44 # evaluated at @var{x}, and @var{info} may be one of the following values:
45 #
46 # @table @asis
47 # @item 1
48 # Converged to a solution point. Relative residual error is less than specified
49 # by TolFun.
50 # @item 2
51 # Last relative step size was less that TolX.
52 # @item 3
53 # Last relative decrease in residual was less than TolF.
54 # @item 0
55 # Iteration limit exceeded.
56 # @item -3
57 # The trust region radius became excessively small.
58 # @end table
59 #
60 # Note: If you only have a single nonlinear equation of one variable, using
61 # @code{fzero} is usually a much better idea.
62 # @seealso{fzero,optimset}
63 # @end deftypefn
64
65 function [x, fvec, info, output, fjac] = fsolve (fcn, x0, options)
66
67 if (nargin < 3)
68 options = struct ();
69 endif
70
71 xsiz = size (x0);
72 n = numel (x0);
73
74 has_jac = strcmp (optimget (options, "Jacobian", "off"), "on");
75 maxiter = optimget (options, "MaxIter", Inf);
76 maxfev = optimget (options, "MaxFunEvals", Inf);
77 outfcn = optimget (options, "OutputFcn");
78 funvalchk = strcmp (optimget (options, "FunValCheck", "off"), "on");
79
80 if (funvalchk)
81 # replace fun with a guarded version
82 fun = @(x) guarded_eval (fun, x);
83 endif
84
85 # These defaults are rather stringent. I think that normally, user prefers
86 # accuracy to performance.
87
88 macheps = eps (class (x0));
89
90 tolx = optimget (options, "TolX", 1e1*macheps);
91 tolf = optimget (options, "TolFun",1e2*macheps);
92
93 factor = 100;
94 # FIXME: TypicalX corresponds to user scaling (???)
95 autodg = true;
96
97 niter = 1; nfev = 0;
98
99 x = x0(:);
100 info = 0;
101
102 # outer loop
103 while (niter < maxiter && nfev < maxfev && ! info)
104
105 # calc func value and jacobian (possibly via FD)
106 # handle arbitrary shapes of x and f and remember them
107 if (has_jac)
108 [fvec, fjac] = fcn (reshape (x, xsiz));
109 nfev ++;
110 else
111 [fvec, fjac] = __fdjac__ (fcn, reshape (x, xsiz));
112 nfev += 1 + length (x);
113 endif
114 fsiz = size (fvec);
115 fvec = fvec(:);
116 fn = norm (fvec);
117
118 # get QR factorization of the jacobian
119 [q, r] = qr (fjac);
120
121 # get column norms, use them as scaling factor
122 jcn = norm (fjac, 'columns').';
123 if (niter == 1)
124 if (autodg)
125 dg = jcn;
126 dg(dg == 0) = 1;
127 endif
128 xn = norm (dg .* x);
129 delta = factor * xn;
130 endif
131
132 # rescale if necessary
133 if (autodg)
134 dg = max (dg, jcn);
135 endif
136
137 nfail = 0;
138 nsuc = 0;
139 # inner loop
140 while (niter <= maxiter && nfev < maxfev && ! info)
141
142 qtf = q'*fvec;
143
144 # get TR model (dogleg) minimizer
145 p = - __dogleg__ (r, qtf, dg, delta);
146 pn = norm (dg .* p);
147
148 if (niter == 1)
149 delta = min (delta, pn);
150 endif
151
152 fvec1 = fcn (reshape (x + p, xsiz)) (:);
153 fn1 = norm (fvec1);
154
155 if (fn1 < fn)
156 # scaled actual reduction
157 actred = 1 - (fn1/fn)^2;
158 else
159 actred = -1;
160 endif
161
162 # scaled predicted reduction, and ratio
163 w = qtf + r*p;
164 t = norm (w);
165 if (t < fn)
166 prered = 1 - (t/fn)^2;
167 ratio = actred / prered;
168 else
169 prered = 0;
170 ratio = 0;
171 endif
172
173 # update delta
174 if (ratio < 0.1)
175 nsuc = 0;
176 nfail ++;
177 delta *= 0.5;
178 if (delta <= sqrt (macheps)*xn)
179 # trust region became uselessly small
180 info = -3;
181 break;
182 endif
183 else
184 nfail = 0;
185 nsuc ++;
186 if (abs (1-ratio) <= 0.1)
187 delta = 2*pn;
188 elseif (ratio >= 0.5 || nsuc > 1)
189 delta = max (delta, 2*pn);
190 endif
191 endif
192
193 if (ratio >= 1e-4)
194 # successful iteration
195 x += p;
196 xn = norm (dg .* x);
197 fvec = fvec1;
198 fn = fn1;
199 niter ++;
200 endif
201
202 # Tests for termination conditions. A mysterious place, anything can
203 # happen if you change something here...
204
205 # The rule of thumb (which I'm not sure M*b is quite following) is that
206 # for a tolerance that depends on scaling, only 0 makes sense as a
207 # default value. But 0 usually means uselessly long iterations,
208 # so we need scaling-independent tolerances wherever possible.
209
210 # XXX: why tolf*n*xn? If abs (e) ~ abs(x) * eps is a vector of
211 # perturbations of x, then norm (fjac*e) <= eps*n*xn, i.e. by tolf ~
212 # eps we demand as much accuracy as we can expect.
213 if (fn <= tolf*n*xn)
214 info = 1;
215 # The following tests done only after successful step.
216 elseif (actred > 0)
217 # This one is classic. Note that we use scaled variables again, but
218 # compare to scaled step, so nothing bad.
219 if (pn <= tolx*xn)
220 info = 2;
221 # Again a classic one. It seems weird to use the same tolf for two
222 # different tests, but that's what M*b manual appears to say.
223 elseif (actred < tolf)
224 info = 3
225 endif
226 endif
227
228 # criterion for recalculating jacobian
229 if (nfail == 2)
230 break;
231 endif
232
233 # compute the scaled Broyden update
234 u = (fvec1 - q*w) / pn;
235 v = dg .* ((dg .* p) / pn);
236
237 # update the QR factorization
238 [q, r] = qrupdate (q, r, u, v);
239
240 endwhile
241 endwhile
242
243 # restore original shapes
244 x = reshape (x, xsiz);
245 fvec = reshape (fvec, fsiz);
246
247 output.iterations = niter;
248 output.funcCount = niter + 2;
249
250 endfunction
251
252 # an assistant function that evaluates a function handle and checks for bad
253 # results.
254 function fx = guarded_eval (fun, x)
255 fx = fun (x);
256 if (! all (isreal (fx)))
257 error ("fsolve:notreal", "fsolve: non-real value encountered");
258 elseif (any (isnan (fx)))
259 error ("fsolve:isnan", "fsolve: NaN value encountered");
260 endif
261 endfunction
262
263 %!function retval = f (p)
264 %! x = p(1);
265 %! y = p(2);
266 %! z = p(3);
267 %! retval = zeros (3, 1);
268 %! retval(1) = sin(x) + y**2 + log(z) - 7;
269 %! retval(2) = 3*x + 2**y -z**3 + 1;
270 %! retval(3) = x + y + z - 5;
271 %!test
272 %! x_opt = [ 0.599054;
273 %! 2.395931;
274 %! 2.005014 ];
275 %! tol = 1.0e-5;
276 %! [x, fval, info] = fsolve (@f, [ 0.5; 2.0; 2.5 ]);
277 %! assert (info > 0);
278 %! assert (norm (x - x_opt, 1) < tol);
279 %! assert (norm (fval) < tol);
280
281 %!function retval = f (p)
282 %! x = p(1);
283 %! y = p(2);
284 %! z = p(3);
285 %! w = p(4);
286 %! retval = zeros (4, 1);
287 %! retval(1) = 3*x + 4*y + exp (z + w) - 1.007;
288 %! retval(2) = 6*x - 4*y + exp (3*z + w) - 11;
289 %! retval(3) = x^4 - 4*y^2 + 6*z - 8*w - 20;
290 %! retval(4) = x^2 + 2*y^3 + z - w - 4;
291 %!test
292 %! x_opt = [ -0.767297326653401, 0.590671081117440, 1.47190018629642, -1.52719341133957 ];
293 %! tol = 1.0e-5;
294 %! [x, fval, info] = fsolve (@f, [-1, 1, 2, -1]);
295 %! assert (info > 0);
296 %! assert (norm (x - x_opt, 1) < tol);
297 %! assert (norm (fval) < tol);