Mercurial > hg > octave-lyh
comparison scripts/polynomial/residue.m @ 8517:81d6ab3ac93c
Allow documentation tobe built for other formats than tex and info
author | sh@sh-laptop |
---|---|
date | Wed, 14 Jan 2009 20:44:25 -0500 |
parents | 836618fee9d6 |
children | eb63fbe60fab |
comparison
equal
deleted
inserted
replaced
8516:e2a179415bac | 8517:81d6ab3ac93c |
---|---|
29 ## {B(s)\over A(s)} = \sum_{m=1}^M {r_m\over (s-p_m)^e_m} | 29 ## {B(s)\over A(s)} = \sum_{m=1}^M {r_m\over (s-p_m)^e_m} |
30 ## + \sum_{i=1}^N k_i s^{N-i}. | 30 ## + \sum_{i=1}^N k_i s^{N-i}. |
31 ## $$ | 31 ## $$ |
32 ## @end tex | 32 ## @end tex |
33 ## @end iftex | 33 ## @end iftex |
34 ## @ifinfo | 34 ## @ifnottex |
35 ## | 35 ## |
36 ## @example | 36 ## @example |
37 ## B(s) M r(m) N | 37 ## B(s) M r(m) N |
38 ## ---- = SUM ------------- + SUM k(i)*s^(N-i) | 38 ## ---- = SUM ------------- + SUM k(i)*s^(N-i) |
39 ## A(s) m=1 (s-p(m))^e(m) i=1 | 39 ## A(s) m=1 (s-p(m))^e(m) i=1 |
40 ## @end example | 40 ## @end example |
41 ## @end ifinfo | 41 ## @end ifnottex |
42 ## | 42 ## |
43 ## @noindent | 43 ## @noindent |
44 ## where @math{M} is the number of poles (the length of the @var{r}, | 44 ## where @math{M} is the number of poles (the length of the @var{r}, |
45 ## @var{p}, and @var{e}), the @var{k} vector is a polynomial of order @math{N-1} | 45 ## @var{p}, and @var{e}), the @var{k} vector is a polynomial of order @math{N-1} |
46 ## representing the direct contribution, and the @var{e} vector specifies | 46 ## representing the direct contribution, and the @var{e} vector specifies |
67 ## $$ | 67 ## $$ |
68 ## {s^2+s+1\over s^3-5s^2+8s-4} = {-2\over s-2} + {7\over (s-2)^2} + {3\over s-1} | 68 ## {s^2+s+1\over s^3-5s^2+8s-4} = {-2\over s-2} + {7\over (s-2)^2} + {3\over s-1} |
69 ## $$ | 69 ## $$ |
70 ## @end tex | 70 ## @end tex |
71 ## @end iftex | 71 ## @end iftex |
72 ## @ifinfo | 72 ## @ifnottex |
73 ## | 73 ## |
74 ## @example | 74 ## @example |
75 ## s^2 + s + 1 -2 7 3 | 75 ## s^2 + s + 1 -2 7 3 |
76 ## ------------------- = ----- + ------- + ----- | 76 ## ------------------- = ----- + ------- + ----- |
77 ## s^3 - 5s^2 + 8s - 4 (s-2) (s-2)^2 (s-1) | 77 ## s^3 - 5s^2 + 8s - 4 (s-2) (s-2)^2 (s-1) |
78 ## @end example | 78 ## @end example |
79 ## | 79 ## |
80 ## @end ifinfo | 80 ## @end ifnottex |
81 ## | 81 ## |
82 ## @deftypefnx {Function File} {[@var{b}, @var{a}] =} residue (@var{r}, @var{p}, @var{k}) | 82 ## @deftypefnx {Function File} {[@var{b}, @var{a}] =} residue (@var{r}, @var{p}, @var{k}) |
83 ## @deftypefnx {Function File} {[@var{b}, @var{a}] =} residue (@var{r}, @var{p}, @var{k}, @var{e}) | 83 ## @deftypefnx {Function File} {[@var{b}, @var{a}] =} residue (@var{r}, @var{p}, @var{k}, @var{e}) |
84 ## Compute the reconstituted quotient of polynomials, | 84 ## Compute the reconstituted quotient of polynomials, |
85 ## @var{b}(s)/@var{a}(s), from the partial fraction expansion; | 85 ## @var{b}(s)/@var{a}(s), from the partial fraction expansion; |
126 ## $$ | 126 ## $$ |
127 ## {-2\over s-2} + {7\over (s-2)^2} + {3\over s-1} + s = {s^4-5s^3+9s^2-3s+1\over s^3-5s^2+8s-4} | 127 ## {-2\over s-2} + {7\over (s-2)^2} + {3\over s-1} + s = {s^4-5s^3+9s^2-3s+1\over s^3-5s^2+8s-4} |
128 ## $$ | 128 ## $$ |
129 ## @end tex | 129 ## @end tex |
130 ## @end iftex | 130 ## @end iftex |
131 ## @ifinfo | 131 ## @ifnottex |
132 ## | 132 ## |
133 ## @example | 133 ## @example |
134 ## -2 7 3 s^4 - 5s^3 + 9s^2 - 3s + 1 | 134 ## -2 7 3 s^4 - 5s^3 + 9s^2 - 3s + 1 |
135 ## ----- + ------- + ----- + s = -------------------------- | 135 ## ----- + ------- + ----- + s = -------------------------- |
136 ## (s-2) (s-2)^2 (s-1) s^3 - 5s^2 + 8s - 4 | 136 ## (s-2) (s-2)^2 (s-1) s^3 - 5s^2 + 8s - 4 |
137 ## @end example | 137 ## @end example |
138 ## @end ifinfo | 138 ## @end ifnottex |
139 ## @seealso{poly, roots, conv, deconv, mpoles, polyval, polyderiv, polyinteg} | 139 ## @seealso{poly, roots, conv, deconv, mpoles, polyval, polyderiv, polyinteg} |
140 ## @end deftypefn | 140 ## @end deftypefn |
141 | 141 |
142 ## Author: Tony Richardson <arichard@stark.cc.oh.us> | 142 ## Author: Tony Richardson <arichard@stark.cc.oh.us> |
143 ## Author: Ben Abbott <bpabbott@mac.com> | 143 ## Author: Ben Abbott <bpabbott@mac.com> |