Mercurial > hg > octave-lyh
comparison libcruft/blas/ctrmv.f @ 7789:82be108cc558
First attempt at single precision tyeps
* * *
corrections to qrupdate single precision routines
* * *
prefer demotion to single over promotion to double
* * *
Add single precision support to log2 function
* * *
Trivial PROJECT file update
* * *
Cache optimized hermitian/transpose methods
* * *
Add tests for tranpose/hermitian and ChangeLog entry for new transpose code
author | David Bateman <dbateman@free.fr> |
---|---|
date | Sun, 27 Apr 2008 22:34:17 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
7788:45f5faba05a2 | 7789:82be108cc558 |
---|---|
1 SUBROUTINE CTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) | |
2 * .. Scalar Arguments .. | |
3 INTEGER INCX,LDA,N | |
4 CHARACTER DIAG,TRANS,UPLO | |
5 * .. | |
6 * .. Array Arguments .. | |
7 COMPLEX A(LDA,*),X(*) | |
8 * .. | |
9 * | |
10 * Purpose | |
11 * ======= | |
12 * | |
13 * CTRMV performs one of the matrix-vector operations | |
14 * | |
15 * x := A*x, or x := A'*x, or x := conjg( A' )*x, | |
16 * | |
17 * where x is an n element vector and A is an n by n unit, or non-unit, | |
18 * upper or lower triangular matrix. | |
19 * | |
20 * Arguments | |
21 * ========== | |
22 * | |
23 * UPLO - CHARACTER*1. | |
24 * On entry, UPLO specifies whether the matrix is an upper or | |
25 * lower triangular matrix as follows: | |
26 * | |
27 * UPLO = 'U' or 'u' A is an upper triangular matrix. | |
28 * | |
29 * UPLO = 'L' or 'l' A is a lower triangular matrix. | |
30 * | |
31 * Unchanged on exit. | |
32 * | |
33 * TRANS - CHARACTER*1. | |
34 * On entry, TRANS specifies the operation to be performed as | |
35 * follows: | |
36 * | |
37 * TRANS = 'N' or 'n' x := A*x. | |
38 * | |
39 * TRANS = 'T' or 't' x := A'*x. | |
40 * | |
41 * TRANS = 'C' or 'c' x := conjg( A' )*x. | |
42 * | |
43 * Unchanged on exit. | |
44 * | |
45 * DIAG - CHARACTER*1. | |
46 * On entry, DIAG specifies whether or not A is unit | |
47 * triangular as follows: | |
48 * | |
49 * DIAG = 'U' or 'u' A is assumed to be unit triangular. | |
50 * | |
51 * DIAG = 'N' or 'n' A is not assumed to be unit | |
52 * triangular. | |
53 * | |
54 * Unchanged on exit. | |
55 * | |
56 * N - INTEGER. | |
57 * On entry, N specifies the order of the matrix A. | |
58 * N must be at least zero. | |
59 * Unchanged on exit. | |
60 * | |
61 * A - COMPLEX array of DIMENSION ( LDA, n ). | |
62 * Before entry with UPLO = 'U' or 'u', the leading n by n | |
63 * upper triangular part of the array A must contain the upper | |
64 * triangular matrix and the strictly lower triangular part of | |
65 * A is not referenced. | |
66 * Before entry with UPLO = 'L' or 'l', the leading n by n | |
67 * lower triangular part of the array A must contain the lower | |
68 * triangular matrix and the strictly upper triangular part of | |
69 * A is not referenced. | |
70 * Note that when DIAG = 'U' or 'u', the diagonal elements of | |
71 * A are not referenced either, but are assumed to be unity. | |
72 * Unchanged on exit. | |
73 * | |
74 * LDA - INTEGER. | |
75 * On entry, LDA specifies the first dimension of A as declared | |
76 * in the calling (sub) program. LDA must be at least | |
77 * max( 1, n ). | |
78 * Unchanged on exit. | |
79 * | |
80 * X - COMPLEX array of dimension at least | |
81 * ( 1 + ( n - 1 )*abs( INCX ) ). | |
82 * Before entry, the incremented array X must contain the n | |
83 * element vector x. On exit, X is overwritten with the | |
84 * tranformed vector x. | |
85 * | |
86 * INCX - INTEGER. | |
87 * On entry, INCX specifies the increment for the elements of | |
88 * X. INCX must not be zero. | |
89 * Unchanged on exit. | |
90 * | |
91 * | |
92 * Level 2 Blas routine. | |
93 * | |
94 * -- Written on 22-October-1986. | |
95 * Jack Dongarra, Argonne National Lab. | |
96 * Jeremy Du Croz, Nag Central Office. | |
97 * Sven Hammarling, Nag Central Office. | |
98 * Richard Hanson, Sandia National Labs. | |
99 * | |
100 * | |
101 * .. Parameters .. | |
102 COMPLEX ZERO | |
103 PARAMETER (ZERO= (0.0E+0,0.0E+0)) | |
104 * .. | |
105 * .. Local Scalars .. | |
106 COMPLEX TEMP | |
107 INTEGER I,INFO,IX,J,JX,KX | |
108 LOGICAL NOCONJ,NOUNIT | |
109 * .. | |
110 * .. External Functions .. | |
111 LOGICAL LSAME | |
112 EXTERNAL LSAME | |
113 * .. | |
114 * .. External Subroutines .. | |
115 EXTERNAL XERBLA | |
116 * .. | |
117 * .. Intrinsic Functions .. | |
118 INTRINSIC CONJG,MAX | |
119 * .. | |
120 * | |
121 * Test the input parameters. | |
122 * | |
123 INFO = 0 | |
124 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN | |
125 INFO = 1 | |
126 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. | |
127 + .NOT.LSAME(TRANS,'C')) THEN | |
128 INFO = 2 | |
129 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN | |
130 INFO = 3 | |
131 ELSE IF (N.LT.0) THEN | |
132 INFO = 4 | |
133 ELSE IF (LDA.LT.MAX(1,N)) THEN | |
134 INFO = 6 | |
135 ELSE IF (INCX.EQ.0) THEN | |
136 INFO = 8 | |
137 END IF | |
138 IF (INFO.NE.0) THEN | |
139 CALL XERBLA('CTRMV ',INFO) | |
140 RETURN | |
141 END IF | |
142 * | |
143 * Quick return if possible. | |
144 * | |
145 IF (N.EQ.0) RETURN | |
146 * | |
147 NOCONJ = LSAME(TRANS,'T') | |
148 NOUNIT = LSAME(DIAG,'N') | |
149 * | |
150 * Set up the start point in X if the increment is not unity. This | |
151 * will be ( N - 1 )*INCX too small for descending loops. | |
152 * | |
153 IF (INCX.LE.0) THEN | |
154 KX = 1 - (N-1)*INCX | |
155 ELSE IF (INCX.NE.1) THEN | |
156 KX = 1 | |
157 END IF | |
158 * | |
159 * Start the operations. In this version the elements of A are | |
160 * accessed sequentially with one pass through A. | |
161 * | |
162 IF (LSAME(TRANS,'N')) THEN | |
163 * | |
164 * Form x := A*x. | |
165 * | |
166 IF (LSAME(UPLO,'U')) THEN | |
167 IF (INCX.EQ.1) THEN | |
168 DO 20 J = 1,N | |
169 IF (X(J).NE.ZERO) THEN | |
170 TEMP = X(J) | |
171 DO 10 I = 1,J - 1 | |
172 X(I) = X(I) + TEMP*A(I,J) | |
173 10 CONTINUE | |
174 IF (NOUNIT) X(J) = X(J)*A(J,J) | |
175 END IF | |
176 20 CONTINUE | |
177 ELSE | |
178 JX = KX | |
179 DO 40 J = 1,N | |
180 IF (X(JX).NE.ZERO) THEN | |
181 TEMP = X(JX) | |
182 IX = KX | |
183 DO 30 I = 1,J - 1 | |
184 X(IX) = X(IX) + TEMP*A(I,J) | |
185 IX = IX + INCX | |
186 30 CONTINUE | |
187 IF (NOUNIT) X(JX) = X(JX)*A(J,J) | |
188 END IF | |
189 JX = JX + INCX | |
190 40 CONTINUE | |
191 END IF | |
192 ELSE | |
193 IF (INCX.EQ.1) THEN | |
194 DO 60 J = N,1,-1 | |
195 IF (X(J).NE.ZERO) THEN | |
196 TEMP = X(J) | |
197 DO 50 I = N,J + 1,-1 | |
198 X(I) = X(I) + TEMP*A(I,J) | |
199 50 CONTINUE | |
200 IF (NOUNIT) X(J) = X(J)*A(J,J) | |
201 END IF | |
202 60 CONTINUE | |
203 ELSE | |
204 KX = KX + (N-1)*INCX | |
205 JX = KX | |
206 DO 80 J = N,1,-1 | |
207 IF (X(JX).NE.ZERO) THEN | |
208 TEMP = X(JX) | |
209 IX = KX | |
210 DO 70 I = N,J + 1,-1 | |
211 X(IX) = X(IX) + TEMP*A(I,J) | |
212 IX = IX - INCX | |
213 70 CONTINUE | |
214 IF (NOUNIT) X(JX) = X(JX)*A(J,J) | |
215 END IF | |
216 JX = JX - INCX | |
217 80 CONTINUE | |
218 END IF | |
219 END IF | |
220 ELSE | |
221 * | |
222 * Form x := A'*x or x := conjg( A' )*x. | |
223 * | |
224 IF (LSAME(UPLO,'U')) THEN | |
225 IF (INCX.EQ.1) THEN | |
226 DO 110 J = N,1,-1 | |
227 TEMP = X(J) | |
228 IF (NOCONJ) THEN | |
229 IF (NOUNIT) TEMP = TEMP*A(J,J) | |
230 DO 90 I = J - 1,1,-1 | |
231 TEMP = TEMP + A(I,J)*X(I) | |
232 90 CONTINUE | |
233 ELSE | |
234 IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J)) | |
235 DO 100 I = J - 1,1,-1 | |
236 TEMP = TEMP + CONJG(A(I,J))*X(I) | |
237 100 CONTINUE | |
238 END IF | |
239 X(J) = TEMP | |
240 110 CONTINUE | |
241 ELSE | |
242 JX = KX + (N-1)*INCX | |
243 DO 140 J = N,1,-1 | |
244 TEMP = X(JX) | |
245 IX = JX | |
246 IF (NOCONJ) THEN | |
247 IF (NOUNIT) TEMP = TEMP*A(J,J) | |
248 DO 120 I = J - 1,1,-1 | |
249 IX = IX - INCX | |
250 TEMP = TEMP + A(I,J)*X(IX) | |
251 120 CONTINUE | |
252 ELSE | |
253 IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J)) | |
254 DO 130 I = J - 1,1,-1 | |
255 IX = IX - INCX | |
256 TEMP = TEMP + CONJG(A(I,J))*X(IX) | |
257 130 CONTINUE | |
258 END IF | |
259 X(JX) = TEMP | |
260 JX = JX - INCX | |
261 140 CONTINUE | |
262 END IF | |
263 ELSE | |
264 IF (INCX.EQ.1) THEN | |
265 DO 170 J = 1,N | |
266 TEMP = X(J) | |
267 IF (NOCONJ) THEN | |
268 IF (NOUNIT) TEMP = TEMP*A(J,J) | |
269 DO 150 I = J + 1,N | |
270 TEMP = TEMP + A(I,J)*X(I) | |
271 150 CONTINUE | |
272 ELSE | |
273 IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J)) | |
274 DO 160 I = J + 1,N | |
275 TEMP = TEMP + CONJG(A(I,J))*X(I) | |
276 160 CONTINUE | |
277 END IF | |
278 X(J) = TEMP | |
279 170 CONTINUE | |
280 ELSE | |
281 JX = KX | |
282 DO 200 J = 1,N | |
283 TEMP = X(JX) | |
284 IX = JX | |
285 IF (NOCONJ) THEN | |
286 IF (NOUNIT) TEMP = TEMP*A(J,J) | |
287 DO 180 I = J + 1,N | |
288 IX = IX + INCX | |
289 TEMP = TEMP + A(I,J)*X(IX) | |
290 180 CONTINUE | |
291 ELSE | |
292 IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J)) | |
293 DO 190 I = J + 1,N | |
294 IX = IX + INCX | |
295 TEMP = TEMP + CONJG(A(I,J))*X(IX) | |
296 190 CONTINUE | |
297 END IF | |
298 X(JX) = TEMP | |
299 JX = JX + INCX | |
300 200 CONTINUE | |
301 END IF | |
302 END IF | |
303 END IF | |
304 * | |
305 RETURN | |
306 * | |
307 * End of CTRMV . | |
308 * | |
309 END |