comparison libcruft/blas/ctrmv.f @ 7789:82be108cc558

First attempt at single precision tyeps * * * corrections to qrupdate single precision routines * * * prefer demotion to single over promotion to double * * * Add single precision support to log2 function * * * Trivial PROJECT file update * * * Cache optimized hermitian/transpose methods * * * Add tests for tranpose/hermitian and ChangeLog entry for new transpose code
author David Bateman <dbateman@free.fr>
date Sun, 27 Apr 2008 22:34:17 +0200
parents
children
comparison
equal deleted inserted replaced
7788:45f5faba05a2 7789:82be108cc558
1 SUBROUTINE CTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
2 * .. Scalar Arguments ..
3 INTEGER INCX,LDA,N
4 CHARACTER DIAG,TRANS,UPLO
5 * ..
6 * .. Array Arguments ..
7 COMPLEX A(LDA,*),X(*)
8 * ..
9 *
10 * Purpose
11 * =======
12 *
13 * CTRMV performs one of the matrix-vector operations
14 *
15 * x := A*x, or x := A'*x, or x := conjg( A' )*x,
16 *
17 * where x is an n element vector and A is an n by n unit, or non-unit,
18 * upper or lower triangular matrix.
19 *
20 * Arguments
21 * ==========
22 *
23 * UPLO - CHARACTER*1.
24 * On entry, UPLO specifies whether the matrix is an upper or
25 * lower triangular matrix as follows:
26 *
27 * UPLO = 'U' or 'u' A is an upper triangular matrix.
28 *
29 * UPLO = 'L' or 'l' A is a lower triangular matrix.
30 *
31 * Unchanged on exit.
32 *
33 * TRANS - CHARACTER*1.
34 * On entry, TRANS specifies the operation to be performed as
35 * follows:
36 *
37 * TRANS = 'N' or 'n' x := A*x.
38 *
39 * TRANS = 'T' or 't' x := A'*x.
40 *
41 * TRANS = 'C' or 'c' x := conjg( A' )*x.
42 *
43 * Unchanged on exit.
44 *
45 * DIAG - CHARACTER*1.
46 * On entry, DIAG specifies whether or not A is unit
47 * triangular as follows:
48 *
49 * DIAG = 'U' or 'u' A is assumed to be unit triangular.
50 *
51 * DIAG = 'N' or 'n' A is not assumed to be unit
52 * triangular.
53 *
54 * Unchanged on exit.
55 *
56 * N - INTEGER.
57 * On entry, N specifies the order of the matrix A.
58 * N must be at least zero.
59 * Unchanged on exit.
60 *
61 * A - COMPLEX array of DIMENSION ( LDA, n ).
62 * Before entry with UPLO = 'U' or 'u', the leading n by n
63 * upper triangular part of the array A must contain the upper
64 * triangular matrix and the strictly lower triangular part of
65 * A is not referenced.
66 * Before entry with UPLO = 'L' or 'l', the leading n by n
67 * lower triangular part of the array A must contain the lower
68 * triangular matrix and the strictly upper triangular part of
69 * A is not referenced.
70 * Note that when DIAG = 'U' or 'u', the diagonal elements of
71 * A are not referenced either, but are assumed to be unity.
72 * Unchanged on exit.
73 *
74 * LDA - INTEGER.
75 * On entry, LDA specifies the first dimension of A as declared
76 * in the calling (sub) program. LDA must be at least
77 * max( 1, n ).
78 * Unchanged on exit.
79 *
80 * X - COMPLEX array of dimension at least
81 * ( 1 + ( n - 1 )*abs( INCX ) ).
82 * Before entry, the incremented array X must contain the n
83 * element vector x. On exit, X is overwritten with the
84 * tranformed vector x.
85 *
86 * INCX - INTEGER.
87 * On entry, INCX specifies the increment for the elements of
88 * X. INCX must not be zero.
89 * Unchanged on exit.
90 *
91 *
92 * Level 2 Blas routine.
93 *
94 * -- Written on 22-October-1986.
95 * Jack Dongarra, Argonne National Lab.
96 * Jeremy Du Croz, Nag Central Office.
97 * Sven Hammarling, Nag Central Office.
98 * Richard Hanson, Sandia National Labs.
99 *
100 *
101 * .. Parameters ..
102 COMPLEX ZERO
103 PARAMETER (ZERO= (0.0E+0,0.0E+0))
104 * ..
105 * .. Local Scalars ..
106 COMPLEX TEMP
107 INTEGER I,INFO,IX,J,JX,KX
108 LOGICAL NOCONJ,NOUNIT
109 * ..
110 * .. External Functions ..
111 LOGICAL LSAME
112 EXTERNAL LSAME
113 * ..
114 * .. External Subroutines ..
115 EXTERNAL XERBLA
116 * ..
117 * .. Intrinsic Functions ..
118 INTRINSIC CONJG,MAX
119 * ..
120 *
121 * Test the input parameters.
122 *
123 INFO = 0
124 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
125 INFO = 1
126 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
127 + .NOT.LSAME(TRANS,'C')) THEN
128 INFO = 2
129 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
130 INFO = 3
131 ELSE IF (N.LT.0) THEN
132 INFO = 4
133 ELSE IF (LDA.LT.MAX(1,N)) THEN
134 INFO = 6
135 ELSE IF (INCX.EQ.0) THEN
136 INFO = 8
137 END IF
138 IF (INFO.NE.0) THEN
139 CALL XERBLA('CTRMV ',INFO)
140 RETURN
141 END IF
142 *
143 * Quick return if possible.
144 *
145 IF (N.EQ.0) RETURN
146 *
147 NOCONJ = LSAME(TRANS,'T')
148 NOUNIT = LSAME(DIAG,'N')
149 *
150 * Set up the start point in X if the increment is not unity. This
151 * will be ( N - 1 )*INCX too small for descending loops.
152 *
153 IF (INCX.LE.0) THEN
154 KX = 1 - (N-1)*INCX
155 ELSE IF (INCX.NE.1) THEN
156 KX = 1
157 END IF
158 *
159 * Start the operations. In this version the elements of A are
160 * accessed sequentially with one pass through A.
161 *
162 IF (LSAME(TRANS,'N')) THEN
163 *
164 * Form x := A*x.
165 *
166 IF (LSAME(UPLO,'U')) THEN
167 IF (INCX.EQ.1) THEN
168 DO 20 J = 1,N
169 IF (X(J).NE.ZERO) THEN
170 TEMP = X(J)
171 DO 10 I = 1,J - 1
172 X(I) = X(I) + TEMP*A(I,J)
173 10 CONTINUE
174 IF (NOUNIT) X(J) = X(J)*A(J,J)
175 END IF
176 20 CONTINUE
177 ELSE
178 JX = KX
179 DO 40 J = 1,N
180 IF (X(JX).NE.ZERO) THEN
181 TEMP = X(JX)
182 IX = KX
183 DO 30 I = 1,J - 1
184 X(IX) = X(IX) + TEMP*A(I,J)
185 IX = IX + INCX
186 30 CONTINUE
187 IF (NOUNIT) X(JX) = X(JX)*A(J,J)
188 END IF
189 JX = JX + INCX
190 40 CONTINUE
191 END IF
192 ELSE
193 IF (INCX.EQ.1) THEN
194 DO 60 J = N,1,-1
195 IF (X(J).NE.ZERO) THEN
196 TEMP = X(J)
197 DO 50 I = N,J + 1,-1
198 X(I) = X(I) + TEMP*A(I,J)
199 50 CONTINUE
200 IF (NOUNIT) X(J) = X(J)*A(J,J)
201 END IF
202 60 CONTINUE
203 ELSE
204 KX = KX + (N-1)*INCX
205 JX = KX
206 DO 80 J = N,1,-1
207 IF (X(JX).NE.ZERO) THEN
208 TEMP = X(JX)
209 IX = KX
210 DO 70 I = N,J + 1,-1
211 X(IX) = X(IX) + TEMP*A(I,J)
212 IX = IX - INCX
213 70 CONTINUE
214 IF (NOUNIT) X(JX) = X(JX)*A(J,J)
215 END IF
216 JX = JX - INCX
217 80 CONTINUE
218 END IF
219 END IF
220 ELSE
221 *
222 * Form x := A'*x or x := conjg( A' )*x.
223 *
224 IF (LSAME(UPLO,'U')) THEN
225 IF (INCX.EQ.1) THEN
226 DO 110 J = N,1,-1
227 TEMP = X(J)
228 IF (NOCONJ) THEN
229 IF (NOUNIT) TEMP = TEMP*A(J,J)
230 DO 90 I = J - 1,1,-1
231 TEMP = TEMP + A(I,J)*X(I)
232 90 CONTINUE
233 ELSE
234 IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J))
235 DO 100 I = J - 1,1,-1
236 TEMP = TEMP + CONJG(A(I,J))*X(I)
237 100 CONTINUE
238 END IF
239 X(J) = TEMP
240 110 CONTINUE
241 ELSE
242 JX = KX + (N-1)*INCX
243 DO 140 J = N,1,-1
244 TEMP = X(JX)
245 IX = JX
246 IF (NOCONJ) THEN
247 IF (NOUNIT) TEMP = TEMP*A(J,J)
248 DO 120 I = J - 1,1,-1
249 IX = IX - INCX
250 TEMP = TEMP + A(I,J)*X(IX)
251 120 CONTINUE
252 ELSE
253 IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J))
254 DO 130 I = J - 1,1,-1
255 IX = IX - INCX
256 TEMP = TEMP + CONJG(A(I,J))*X(IX)
257 130 CONTINUE
258 END IF
259 X(JX) = TEMP
260 JX = JX - INCX
261 140 CONTINUE
262 END IF
263 ELSE
264 IF (INCX.EQ.1) THEN
265 DO 170 J = 1,N
266 TEMP = X(J)
267 IF (NOCONJ) THEN
268 IF (NOUNIT) TEMP = TEMP*A(J,J)
269 DO 150 I = J + 1,N
270 TEMP = TEMP + A(I,J)*X(I)
271 150 CONTINUE
272 ELSE
273 IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J))
274 DO 160 I = J + 1,N
275 TEMP = TEMP + CONJG(A(I,J))*X(I)
276 160 CONTINUE
277 END IF
278 X(J) = TEMP
279 170 CONTINUE
280 ELSE
281 JX = KX
282 DO 200 J = 1,N
283 TEMP = X(JX)
284 IX = JX
285 IF (NOCONJ) THEN
286 IF (NOUNIT) TEMP = TEMP*A(J,J)
287 DO 180 I = J + 1,N
288 IX = IX + INCX
289 TEMP = TEMP + A(I,J)*X(IX)
290 180 CONTINUE
291 ELSE
292 IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J))
293 DO 190 I = J + 1,N
294 IX = IX + INCX
295 TEMP = TEMP + CONJG(A(I,J))*X(IX)
296 190 CONTINUE
297 END IF
298 X(JX) = TEMP
299 JX = JX + INCX
300 200 CONTINUE
301 END IF
302 END IF
303 END IF
304 *
305 RETURN
306 *
307 * End of CTRMV .
308 *
309 END