comparison libcruft/lapack/slasd3.f @ 7789:82be108cc558

First attempt at single precision tyeps * * * corrections to qrupdate single precision routines * * * prefer demotion to single over promotion to double * * * Add single precision support to log2 function * * * Trivial PROJECT file update * * * Cache optimized hermitian/transpose methods * * * Add tests for tranpose/hermitian and ChangeLog entry for new transpose code
author David Bateman <dbateman@free.fr>
date Sun, 27 Apr 2008 22:34:17 +0200
parents
children
comparison
equal deleted inserted replaced
7788:45f5faba05a2 7789:82be108cc558
1 SUBROUTINE SLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
2 $ LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
3 $ INFO )
4 *
5 * -- LAPACK auxiliary routine (version 3.1) --
6 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
7 * November 2006
8 *
9 * .. Scalar Arguments ..
10 INTEGER INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
11 $ SQRE
12 * ..
13 * .. Array Arguments ..
14 INTEGER CTOT( * ), IDXC( * )
15 REAL D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
16 $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
17 $ Z( * )
18 * ..
19 *
20 * Purpose
21 * =======
22 *
23 * SLASD3 finds all the square roots of the roots of the secular
24 * equation, as defined by the values in D and Z. It makes the
25 * appropriate calls to SLASD4 and then updates the singular
26 * vectors by matrix multiplication.
27 *
28 * This code makes very mild assumptions about floating point
29 * arithmetic. It will work on machines with a guard digit in
30 * add/subtract, or on those binary machines without guard digits
31 * which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
32 * It could conceivably fail on hexadecimal or decimal machines
33 * without guard digits, but we know of none.
34 *
35 * SLASD3 is called from SLASD1.
36 *
37 * Arguments
38 * =========
39 *
40 * NL (input) INTEGER
41 * The row dimension of the upper block. NL >= 1.
42 *
43 * NR (input) INTEGER
44 * The row dimension of the lower block. NR >= 1.
45 *
46 * SQRE (input) INTEGER
47 * = 0: the lower block is an NR-by-NR square matrix.
48 * = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
49 *
50 * The bidiagonal matrix has N = NL + NR + 1 rows and
51 * M = N + SQRE >= N columns.
52 *
53 * K (input) INTEGER
54 * The size of the secular equation, 1 =< K = < N.
55 *
56 * D (output) REAL array, dimension(K)
57 * On exit the square roots of the roots of the secular equation,
58 * in ascending order.
59 *
60 * Q (workspace) REAL array,
61 * dimension at least (LDQ,K).
62 *
63 * LDQ (input) INTEGER
64 * The leading dimension of the array Q. LDQ >= K.
65 *
66 * DSIGMA (input/output) REAL array, dimension(K)
67 * The first K elements of this array contain the old roots
68 * of the deflated updating problem. These are the poles
69 * of the secular equation.
70 *
71 * U (output) REAL array, dimension (LDU, N)
72 * The last N - K columns of this matrix contain the deflated
73 * left singular vectors.
74 *
75 * LDU (input) INTEGER
76 * The leading dimension of the array U. LDU >= N.
77 *
78 * U2 (input) REAL array, dimension (LDU2, N)
79 * The first K columns of this matrix contain the non-deflated
80 * left singular vectors for the split problem.
81 *
82 * LDU2 (input) INTEGER
83 * The leading dimension of the array U2. LDU2 >= N.
84 *
85 * VT (output) REAL array, dimension (LDVT, M)
86 * The last M - K columns of VT' contain the deflated
87 * right singular vectors.
88 *
89 * LDVT (input) INTEGER
90 * The leading dimension of the array VT. LDVT >= N.
91 *
92 * VT2 (input/output) REAL array, dimension (LDVT2, N)
93 * The first K columns of VT2' contain the non-deflated
94 * right singular vectors for the split problem.
95 *
96 * LDVT2 (input) INTEGER
97 * The leading dimension of the array VT2. LDVT2 >= N.
98 *
99 * IDXC (input) INTEGER array, dimension (N)
100 * The permutation used to arrange the columns of U (and rows of
101 * VT) into three groups: the first group contains non-zero
102 * entries only at and above (or before) NL +1; the second
103 * contains non-zero entries only at and below (or after) NL+2;
104 * and the third is dense. The first column of U and the row of
105 * VT are treated separately, however.
106 *
107 * The rows of the singular vectors found by SLASD4
108 * must be likewise permuted before the matrix multiplies can
109 * take place.
110 *
111 * CTOT (input) INTEGER array, dimension (4)
112 * A count of the total number of the various types of columns
113 * in U (or rows in VT), as described in IDXC. The fourth column
114 * type is any column which has been deflated.
115 *
116 * Z (input/output) REAL array, dimension (K)
117 * The first K elements of this array contain the components
118 * of the deflation-adjusted updating row vector.
119 *
120 * INFO (output) INTEGER
121 * = 0: successful exit.
122 * < 0: if INFO = -i, the i-th argument had an illegal value.
123 * > 0: if INFO = 1, an singular value did not converge
124 *
125 * Further Details
126 * ===============
127 *
128 * Based on contributions by
129 * Ming Gu and Huan Ren, Computer Science Division, University of
130 * California at Berkeley, USA
131 *
132 * =====================================================================
133 *
134 * .. Parameters ..
135 REAL ONE, ZERO, NEGONE
136 PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0,
137 $ NEGONE = -1.0E+0 )
138 * ..
139 * .. Local Scalars ..
140 INTEGER CTEMP, I, J, JC, KTEMP, M, N, NLP1, NLP2, NRP1
141 REAL RHO, TEMP
142 * ..
143 * .. External Functions ..
144 REAL SLAMC3, SNRM2
145 EXTERNAL SLAMC3, SNRM2
146 * ..
147 * .. External Subroutines ..
148 EXTERNAL SCOPY, SGEMM, SLACPY, SLASCL, SLASD4, XERBLA
149 * ..
150 * .. Intrinsic Functions ..
151 INTRINSIC ABS, SIGN, SQRT
152 * ..
153 * .. Executable Statements ..
154 *
155 * Test the input parameters.
156 *
157 INFO = 0
158 *
159 IF( NL.LT.1 ) THEN
160 INFO = -1
161 ELSE IF( NR.LT.1 ) THEN
162 INFO = -2
163 ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
164 INFO = -3
165 END IF
166 *
167 N = NL + NR + 1
168 M = N + SQRE
169 NLP1 = NL + 1
170 NLP2 = NL + 2
171 *
172 IF( ( K.LT.1 ) .OR. ( K.GT.N ) ) THEN
173 INFO = -4
174 ELSE IF( LDQ.LT.K ) THEN
175 INFO = -7
176 ELSE IF( LDU.LT.N ) THEN
177 INFO = -10
178 ELSE IF( LDU2.LT.N ) THEN
179 INFO = -12
180 ELSE IF( LDVT.LT.M ) THEN
181 INFO = -14
182 ELSE IF( LDVT2.LT.M ) THEN
183 INFO = -16
184 END IF
185 IF( INFO.NE.0 ) THEN
186 CALL XERBLA( 'SLASD3', -INFO )
187 RETURN
188 END IF
189 *
190 * Quick return if possible
191 *
192 IF( K.EQ.1 ) THEN
193 D( 1 ) = ABS( Z( 1 ) )
194 CALL SCOPY( M, VT2( 1, 1 ), LDVT2, VT( 1, 1 ), LDVT )
195 IF( Z( 1 ).GT.ZERO ) THEN
196 CALL SCOPY( N, U2( 1, 1 ), 1, U( 1, 1 ), 1 )
197 ELSE
198 DO 10 I = 1, N
199 U( I, 1 ) = -U2( I, 1 )
200 10 CONTINUE
201 END IF
202 RETURN
203 END IF
204 *
205 * Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
206 * be computed with high relative accuracy (barring over/underflow).
207 * This is a problem on machines without a guard digit in
208 * add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
209 * The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
210 * which on any of these machines zeros out the bottommost
211 * bit of DSIGMA(I) if it is 1; this makes the subsequent
212 * subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
213 * occurs. On binary machines with a guard digit (almost all
214 * machines) it does not change DSIGMA(I) at all. On hexadecimal
215 * and decimal machines with a guard digit, it slightly
216 * changes the bottommost bits of DSIGMA(I). It does not account
217 * for hexadecimal or decimal machines without guard digits
218 * (we know of none). We use a subroutine call to compute
219 * 2*DSIGMA(I) to prevent optimizing compilers from eliminating
220 * this code.
221 *
222 DO 20 I = 1, K
223 DSIGMA( I ) = SLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
224 20 CONTINUE
225 *
226 * Keep a copy of Z.
227 *
228 CALL SCOPY( K, Z, 1, Q, 1 )
229 *
230 * Normalize Z.
231 *
232 RHO = SNRM2( K, Z, 1 )
233 CALL SLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
234 RHO = RHO*RHO
235 *
236 * Find the new singular values.
237 *
238 DO 30 J = 1, K
239 CALL SLASD4( K, J, DSIGMA, Z, U( 1, J ), RHO, D( J ),
240 $ VT( 1, J ), INFO )
241 *
242 * If the zero finder fails, the computation is terminated.
243 *
244 IF( INFO.NE.0 ) THEN
245 RETURN
246 END IF
247 30 CONTINUE
248 *
249 * Compute updated Z.
250 *
251 DO 60 I = 1, K
252 Z( I ) = U( I, K )*VT( I, K )
253 DO 40 J = 1, I - 1
254 Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
255 $ ( DSIGMA( I )-DSIGMA( J ) ) /
256 $ ( DSIGMA( I )+DSIGMA( J ) ) )
257 40 CONTINUE
258 DO 50 J = I, K - 1
259 Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
260 $ ( DSIGMA( I )-DSIGMA( J+1 ) ) /
261 $ ( DSIGMA( I )+DSIGMA( J+1 ) ) )
262 50 CONTINUE
263 Z( I ) = SIGN( SQRT( ABS( Z( I ) ) ), Q( I, 1 ) )
264 60 CONTINUE
265 *
266 * Compute left singular vectors of the modified diagonal matrix,
267 * and store related information for the right singular vectors.
268 *
269 DO 90 I = 1, K
270 VT( 1, I ) = Z( 1 ) / U( 1, I ) / VT( 1, I )
271 U( 1, I ) = NEGONE
272 DO 70 J = 2, K
273 VT( J, I ) = Z( J ) / U( J, I ) / VT( J, I )
274 U( J, I ) = DSIGMA( J )*VT( J, I )
275 70 CONTINUE
276 TEMP = SNRM2( K, U( 1, I ), 1 )
277 Q( 1, I ) = U( 1, I ) / TEMP
278 DO 80 J = 2, K
279 JC = IDXC( J )
280 Q( J, I ) = U( JC, I ) / TEMP
281 80 CONTINUE
282 90 CONTINUE
283 *
284 * Update the left singular vector matrix.
285 *
286 IF( K.EQ.2 ) THEN
287 CALL SGEMM( 'N', 'N', N, K, K, ONE, U2, LDU2, Q, LDQ, ZERO, U,
288 $ LDU )
289 GO TO 100
290 END IF
291 IF( CTOT( 1 ).GT.0 ) THEN
292 CALL SGEMM( 'N', 'N', NL, K, CTOT( 1 ), ONE, U2( 1, 2 ), LDU2,
293 $ Q( 2, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
294 IF( CTOT( 3 ).GT.0 ) THEN
295 KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
296 CALL SGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
297 $ LDU2, Q( KTEMP, 1 ), LDQ, ONE, U( 1, 1 ), LDU )
298 END IF
299 ELSE IF( CTOT( 3 ).GT.0 ) THEN
300 KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
301 CALL SGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
302 $ LDU2, Q( KTEMP, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
303 ELSE
304 CALL SLACPY( 'F', NL, K, U2, LDU2, U, LDU )
305 END IF
306 CALL SCOPY( K, Q( 1, 1 ), LDQ, U( NLP1, 1 ), LDU )
307 KTEMP = 2 + CTOT( 1 )
308 CTEMP = CTOT( 2 ) + CTOT( 3 )
309 CALL SGEMM( 'N', 'N', NR, K, CTEMP, ONE, U2( NLP2, KTEMP ), LDU2,
310 $ Q( KTEMP, 1 ), LDQ, ZERO, U( NLP2, 1 ), LDU )
311 *
312 * Generate the right singular vectors.
313 *
314 100 CONTINUE
315 DO 120 I = 1, K
316 TEMP = SNRM2( K, VT( 1, I ), 1 )
317 Q( I, 1 ) = VT( 1, I ) / TEMP
318 DO 110 J = 2, K
319 JC = IDXC( J )
320 Q( I, J ) = VT( JC, I ) / TEMP
321 110 CONTINUE
322 120 CONTINUE
323 *
324 * Update the right singular vector matrix.
325 *
326 IF( K.EQ.2 ) THEN
327 CALL SGEMM( 'N', 'N', K, M, K, ONE, Q, LDQ, VT2, LDVT2, ZERO,
328 $ VT, LDVT )
329 RETURN
330 END IF
331 KTEMP = 1 + CTOT( 1 )
332 CALL SGEMM( 'N', 'N', K, NLP1, KTEMP, ONE, Q( 1, 1 ), LDQ,
333 $ VT2( 1, 1 ), LDVT2, ZERO, VT( 1, 1 ), LDVT )
334 KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
335 IF( KTEMP.LE.LDVT2 )
336 $ CALL SGEMM( 'N', 'N', K, NLP1, CTOT( 3 ), ONE, Q( 1, KTEMP ),
337 $ LDQ, VT2( KTEMP, 1 ), LDVT2, ONE, VT( 1, 1 ),
338 $ LDVT )
339 *
340 KTEMP = CTOT( 1 ) + 1
341 NRP1 = NR + SQRE
342 IF( KTEMP.GT.1 ) THEN
343 DO 130 I = 1, K
344 Q( I, KTEMP ) = Q( I, 1 )
345 130 CONTINUE
346 DO 140 I = NLP2, M
347 VT2( KTEMP, I ) = VT2( 1, I )
348 140 CONTINUE
349 END IF
350 CTEMP = 1 + CTOT( 2 ) + CTOT( 3 )
351 CALL SGEMM( 'N', 'N', K, NRP1, CTEMP, ONE, Q( 1, KTEMP ), LDQ,
352 $ VT2( KTEMP, NLP2 ), LDVT2, ZERO, VT( 1, NLP2 ), LDVT )
353 *
354 RETURN
355 *
356 * End of SLASD3
357 *
358 END