Mercurial > hg > octave-lyh
comparison scripts/optimization/fminunc.m @ 14895:e0525ecf156e
Add new function fminsearch.m
* fminsearch.m: new function.
* optimization/module.mk: Add fminsearch to build system.
* NEWS: Add fminsearch to list of new functions in 3.8.0.
* nonlin.txi, fminbnd.m, fminunc.m: Add fminsearch to documentation.
Update other optimization functions to reference fminsearch.
author | Andy Adler <andy@analyti.ca> |
---|---|
date | Fri, 20 Jul 2012 09:25:37 -0700 |
parents | 5d3a684236b0 |
children | bc924baa2c4e |
comparison
equal
deleted
inserted
replaced
14893:55d0f8d70fe9 | 14895:e0525ecf156e |
---|---|
22 ## @deftypefn {Function File} {} fminunc (@var{fcn}, @var{x0}) | 22 ## @deftypefn {Function File} {} fminunc (@var{fcn}, @var{x0}) |
23 ## @deftypefnx {Function File} {} fminunc (@var{fcn}, @var{x0}, @var{options}) | 23 ## @deftypefnx {Function File} {} fminunc (@var{fcn}, @var{x0}, @var{options}) |
24 ## @deftypefnx {Function File} {[@var{x}, @var{fvec}, @var{info}, @var{output}, @var{grad}, @var{hess}] =} fminunc (@var{fcn}, @dots{}) | 24 ## @deftypefnx {Function File} {[@var{x}, @var{fvec}, @var{info}, @var{output}, @var{grad}, @var{hess}] =} fminunc (@var{fcn}, @dots{}) |
25 ## Solve an unconstrained optimization problem defined by the function | 25 ## Solve an unconstrained optimization problem defined by the function |
26 ## @var{fcn}. | 26 ## @var{fcn}. |
27 ## | |
27 ## @var{fcn} should accepts a vector (array) defining the unknown variables, | 28 ## @var{fcn} should accepts a vector (array) defining the unknown variables, |
28 ## and return the objective function value, optionally with gradient. | 29 ## and return the objective function value, optionally with gradient. |
29 ## In other words, this function attempts to determine a vector @var{x} such | 30 ## In other words, this function attempts to determine a vector @var{x} such |
30 ## that @code{@var{fcn} (@var{x})} is a local minimum. | 31 ## that @code{@var{fcn} (@var{x})} is a local minimum. |
31 ## @var{x0} determines a starting guess. The shape of @var{x0} is preserved | 32 ## @var{x0} determines a starting guess. The shape of @var{x0} is preserved |
70 ## | 71 ## |
71 ## Optionally, fminunc can also yield a structure with convergence statistics | 72 ## Optionally, fminunc can also yield a structure with convergence statistics |
72 ## (@var{output}), the output gradient (@var{grad}) and approximate Hessian | 73 ## (@var{output}), the output gradient (@var{grad}) and approximate Hessian |
73 ## (@var{hess}). | 74 ## (@var{hess}). |
74 ## | 75 ## |
75 ## Note: If you only have a single nonlinear equation of one variable, using | 76 ## Notes: If you only have a single nonlinear equation of one variable then |
76 ## @code{fminbnd} is usually a much better idea. | 77 ## using @code{fminbnd} is usually a much better idea. The algorithm used is a |
77 ## @seealso{fminbnd, optimset} | 78 ## gradient search which depends on the objective function being differentiable. |
79 ## If the function has discontinuities it may be better to use a derivative-free | |
80 ## algorithm such as @code{fminsearch}. | |
81 ## @seealso{fminbnd, fminsearch, optimset} | |
78 ## @end deftypefn | 82 ## @end deftypefn |
79 | 83 |
80 ## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup. | 84 ## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup. |
81 ## PKG_ADD: [~] = __all_opts__ ("fminunc"); | 85 ## PKG_ADD: [~] = __all_opts__ ("fminunc"); |
82 | 86 |