Mercurial > hg > octave-lyh
diff doc/interpreter/sparse.txi @ 8817:03b7f618ab3d
include docstrings for new functions in the manual
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 19 Feb 2009 15:39:19 -0500 |
parents | cdb4788879b3 |
children | 8463d1a2e544 |
line wrap: on
line diff
--- a/doc/interpreter/sparse.txi +++ b/doc/interpreter/sparse.txi @@ -27,13 +27,13 @@ @chapter Sparse Matrices @menu -* Basics:: The Creation and Manipulation of Sparse Matrices -* Sparse Linear Algebra:: Linear Algebra on Sparse Matrices -* Iterative Techniques:: Iterative Techniques applied to Sparse Matrices -* Real Life Example:: Real Life Example of the use of Sparse Matrices +* Basics:: Creation and Manipulation of Sparse Matrices +* Sparse Linear Algebra:: Linear Algebra on Sparse Matrices +* Iterative Techniques:: Iterative Techniques +* Real Life Example:: Using Sparse Matrices @end menu -@node Basics, Sparse Linear Algebra, Sparse Matrices, Sparse Matrices +@node Basics @section The Creation and Manipulation of Sparse Matrices The size of mathematical problems that can be treated at any particular @@ -56,13 +56,13 @@ on them. @menu -* Storage:: Storage of Sparse Matrices -* Creation:: Creating Sparse Matrices -* Information:: Finding out Information about Sparse Matrices -* Operators and Functions:: Basic Operators and Functions on Sparse Matrices +* Storage of Sparse Matrices:: +* Creating Sparse Matrices:: +* Information:: +* Operators and Functions:: @end menu -@node Storage, Creation, Basics, Basics +@node Storage of Sparse Matrices @subsection Storage of Sparse Matrices It is not strictly speaking necessary for the user to understand how @@ -166,7 +166,7 @@ such as concatenating two sparse matrices together easier and faster, however it adds complexity and speed problems elsewhere. -@node Creation, Information, Storage, Basics +@node Creating Sparse Matrices @subsection Creating Sparse Matrices There are several means to create sparse matrix. @@ -303,7 +303,7 @@ you are referred to chapter @ref{Dynamically Linked Functions}, to have a full description of the techniques involved. -@node Information, Operators and Functions, Creation, Basics +@node Information @subsection Finding out Information about Sparse Matrices There are a number of functions that allow information concerning @@ -421,16 +421,18 @@ @DOCSTRING(treeplot) -@node Operators and Functions, , Information, Basics +@DOCSTRING(treelayout) + +@node Operators and Functions @subsection Basic Operators and Functions on Sparse Matrices @menu -* Functions:: Sparse Functions -* ReturnType:: The Return Types of Operators and Functions -* MathConsiderations:: Mathematical Considerations +* Sparse Functions:: +* Return Types of Operators and Functions:: +* Mathematical Considerations:: @end menu -@node Functions, ReturnType, Operators and Functions, Operators and Functions +@node Sparse Functions @subsubsection Sparse Functions An important consideration in the use of the sparse functions of @@ -491,7 +493,7 @@ supplied with these functions within Octave itself for further details. -@node ReturnType, MathConsiderations, Functions, Operators and Functions +@node Return Types of Operators and Functions @subsubsection The Return Types of Operators and Functions The two basic reasons to use sparse matrices are to reduce the memory @@ -550,7 +552,7 @@ Note that the @code{sparse_auto_mutate} option is incompatible with @sc{Matlab}, and so it is off by default. -@node MathConsiderations, , ReturnType, Operators and Functions +@node Mathematical Considerations @subsubsection Mathematical Considerations The attempt has been made to make sparse matrices behave in exactly the @@ -722,7 +724,7 @@ @DOCSTRING(symrcm) -@node Sparse Linear Algebra, Iterative Techniques, Basics, Sparse Matrices +@node Sparse Linear Algebra @section Linear Algebra on Sparse Matrices Octave includes a polymorphic solver for sparse matrices, where @@ -840,7 +842,7 @@ @DOCSTRING(svds) -@node Iterative Techniques, Real Life Example, Sparse Linear Algebra, Sparse Matrices +@node Iterative Techniques @section Iterative Techniques applied to sparse matrices The left division @code{\} and right division @code{/} operators, @@ -861,7 +863,7 @@ @DOCSTRING(luinc) -@node Real Life Example, , Iterative Techniques, Sparse Matrices +@node Real Life Example @section Real Life Example of the use of Sparse Matrices A common application for sparse matrices is in the solution of Finite