diff scripts/linear-algebra/norm.m @ 2311:2b5788792cad

[project @ 1996-07-11 20:18:38 by jwe]
author jwe
date Thu, 11 Jul 1996 20:18:38 +0000
parents 5cffc4b8de57
children 5ca126254d15
line wrap: on
line diff
--- a/scripts/linear-algebra/norm.m
+++ b/scripts/linear-algebra/norm.m
@@ -17,33 +17,33 @@
 ### Software Foundation, 59 Temple Place - Suite 330, Boston, MA
 ### 02111-1307, USA.
 
-function retval = norm (x, p)
+## usage: norm (x, p)
+##
+## Compute the p-norm of x.
+##
+## If x is a matrix:
+##
+##   value of p     norm returns
+##   ----------     ------------
+##       1          1-norm, the largest column sum of x
+##       2          largest singular value of x
+##      Inf         infinity norm, the largest row sum of x
+##     "inf"        same as Inf
+##     "fro"        Frobenius norm of x, sqrt (sum (diag (x' * x)))
+##
+## If x is a vector or a scalar:
+##
+##   value of p     norm returns
+##   ----------     ------------
+##      Inf         max (abs (x))
+##     -Inf         min (abs (x))
+##     other        p-norm of x, sum (abs (x) .^ p) ^ (1/p)
+##
+## If the second argument is missing, p = 2 is assumed.
+##
+## See also: cond, svd
 
-  ## usage: norm (x, p)
-  ##
-  ## Compute the p-norm of x.
-  ##
-  ## If x is a matrix:
-  ##
-  ##   value of p     norm returns
-  ##   ----------     ------------
-  ##       1          1-norm, the largest column sum of x
-  ##       2          largest singular value of x
-  ##      Inf         infinity norm, the largest row sum of x
-  ##     "inf"        same as Inf
-  ##     "fro"        Frobenius norm of x, sqrt (sum (diag (x' * x)))
-  ##
-  ## If x is a vector or a scalar:
-  ##
-  ##   value of p     norm returns
-  ##   ----------     ------------
-  ##      Inf         max (abs (x))
-  ##     -Inf         min (abs (x))
-  ##     other        p-norm of x, sum (abs (x) .^ p) ^ (1/p)
-  ##
-  ## If the second argument is missing, p = 2 is assumed.
-  ##
-  ## See also: cond, svd
+function retval = norm (x, p)
 
   if (nargin < 1 || nargin > 2)
     error ("usage: norm (x [, p])");