Mercurial > hg > octave-lyh
diff liboctave/mx-op-defs.h @ 2870:3241d0057e78
[project @ 1997-04-19 01:21:29 by jwe]
author | jwe |
---|---|
date | Sat, 19 Apr 1997 01:23:06 +0000 |
parents | 8b262e771614 |
children | fccab8e7d35f |
line wrap: on
line diff
--- a/liboctave/mx-op-defs.h +++ b/liboctave/mx-op-defs.h @@ -28,48 +28,123 @@ #define BIN_OP_DECL(R, OP, X, Y) \ extern R OP (const X&, const Y&) -#define MS_OP_DECLS(R, M, S) \ +class boolMatrix; + +#define CMP_OP_DECL(OP, X, Y) \ + extern boolMatrix OP (const X&, const Y&) + +#define BOOL_OP_DECL(OP, X, Y) \ + extern boolMatrix OP (const X&, const Y&) + +#define TBM boolMatrix (1, 1, true) +#define FBM boolMatrix (1, 1, false) +#define NBM boolMatrix () + +#if 0 + +// vector by scalar operations. + +#define VS_BIN_OP_DECLS(R, V, S) \ + BIN_OP_DECL (R, operator +, V, S); \ + BIN_OP_DECL (R, operator -, V, S); \ + BIN_OP_DECL (R, operator *, V, S); \ + BIN_OP_DECL (R, operator /, V, S); + +#define VS_BIN_OP(R, F, OP, V, S) \ + R \ + F (const V& v, const S& s) \ + { \ + int len = v.length (); \ + \ + R r (len); \ + \ + for (size_t i = 0; i < len; i++) \ + r.elem(i) = v.elem(i) OP s; \ + \ + return r; \ + } + +#define VS_BIN_OPS(R, V, S) \ + VS_BIN_OP (R, operator +, +, V, S) \ + VS_BIN_OP (R, operator -, -, V, S) \ + VS_BIN_OP (R, operator *, *, V, S) \ + VS_BIN_OP (R, operator /, /, V, S) + +// scalar by vector by operations. + +#define SV_BIN_OP_DECLS(R, S, V) \ + BIN_OP_DECL (R, operator +, S, V); \ + BIN_OP_DECL (R, operator -, S, V); \ + BIN_OP_DECL (R, operator *, S, V); \ + BIN_OP_DECL (R, operator /, S, V); + +#define SV_BIN_OP(R, F, OP, S, V) \ + R \ + F (const S& s, const V& v) \ + { \ + int len = v.length (); \ + \ + R r (len); \ + \ + for (size_t i = 0; i < len; i++) \ + r.elem(i) = s OP v.elem(i); \ + \ + return r; \ + } + +#define SV_BIN_OPS(R, S, V) \ + SV_BIN_OP (R, operator +, +, S, V) \ + SV_BIN_OP (R, operator -, -, S, V) \ + SV_BIN_OP (R, operator *, *, S, V) \ + SV_BIN_OP (R, operator /, /, S, V) + +// vector by vector operations. + +#define VV_BIN_OP_DECLS(R, V1, V2) \ + BIN_OP_DECL (R, operator +, V1, V2); \ + BIN_OP_DECL (R, operator -, V1, V2); \ + BIN_OP_DECL (R, product, V1, V2); \ + BIN_OP_DECL (R, quotient, V1, V2); + +#define VV_BIN_OP(R, F, OP, V1, V2) \ + R \ + F (const V1& v1, const V2& v2) \ + { \ + R r; \ + \ + int v1_len = v1.length (); \ + int v2_len = v2.length (); \ + \ + if (v1_len != v2_len) \ + gripe_nonconformant (#OP, v1_len, v2_len); \ + else \ + { \ + r.resize (v1_len); \ + \ + for (size_t i = 0; i < v1_len; i++) \ + r.elem(i) = v1.elem(i) OP v2.elem(i); \ + } \ + \ + return r; \ + } + +#define VV_BIN_OPS(R, V1, V2) \ + VV_BIN_OP (R, operator +, +, V1, V2) \ + VV_BIN_OP (R, operator -, -, V1, V2) \ + VV_BIN_OP (R, product, *, V1, V2) \ + VV_BIN_OP (R, quotient, /, V1, V2) + +#endif + +// matrix by scalar operations. + +#define MS_BIN_OP_DECLS(R, M, S) \ BIN_OP_DECL (R, operator +, M, S); \ BIN_OP_DECL (R, operator -, M, S); \ BIN_OP_DECL (R, operator *, M, S); \ BIN_OP_DECL (R, operator /, M, S); -#define SM_OP_DECLS(R, S, M) \ - BIN_OP_DECL (R, operator +, S, M); \ - BIN_OP_DECL (R, operator -, S, M); \ - BIN_OP_DECL (R, operator *, S, M); \ - BIN_OP_DECL (R, operator /, S, M); - -#define MM_OP_DECLS(R, M1, M2) \ - BIN_OP_DECL (R, operator +, M1, M2); \ - BIN_OP_DECL (R, operator -, M1, M2); \ - BIN_OP_DECL (R, product, M1, M2); \ - BIN_OP_DECL (R, quotient, M1, M2); - -#define SDM_OP_DECLS(R, S, DM) \ - BIN_OP_DECL (R, operator +, S, DM); \ - BIN_OP_DECL (R, operator -, S, DM); - -#define DMS_OP_DECLS(R, DM, S) \ - BIN_OP_DECL (R, operator +, DM, S); \ - BIN_OP_DECL (R, operator -, DM, S); - -#define MDM_OP_DECLS(R, M, DM) \ - BIN_OP_DECL (R, operator +, M, DM); \ - BIN_OP_DECL (R, operator -, M, DM); \ - BIN_OP_DECL (R, operator *, M, DM); - -#define DMM_OP_DECLS(R, DM, M) \ - BIN_OP_DECL (R, operator +, DM, M); \ - BIN_OP_DECL (R, operator -, DM, M); \ - BIN_OP_DECL (R, operator *, DM, M); - -#define DMDM_OP_DECLS(R, DM1, DM2) \ - BIN_OP_DECL (R, operator +, DM1, DM2); \ - BIN_OP_DECL (R, operator -, DM1, DM2); \ - BIN_OP_DECL (R, product, DM1, DM2); - -#define MS_OP(R, OP, M, S, F) \ +#define MS_BIN_OP(R, OP, M, S, F) \ R \ OP (const M& m, const S& s) \ { \ @@ -84,13 +159,94 @@ return r; \ } -#define MS_OPS(R, M, S) \ - MS_OP (R, operator +, M, S, add) \ - MS_OP (R, operator -, M, S, subtract) \ - MS_OP (R, operator *, M, S, multiply) \ - MS_OP (R, operator /, M, S, divide) +#define MS_BIN_OPS(R, M, S) \ + MS_BIN_OP (R, operator +, M, S, add) \ + MS_BIN_OP (R, operator -, M, S, subtract) \ + MS_BIN_OP (R, operator *, M, S, multiply) \ + MS_BIN_OP (R, operator /, M, S, divide) + +#define MS_CMP_OP_DECLS(M, S) \ + CMP_OP_DECL (mx_el_lt, M, S); \ + CMP_OP_DECL (mx_el_le, M, S); \ + CMP_OP_DECL (mx_el_ge, M, S); \ + CMP_OP_DECL (mx_el_gt, M, S); \ + CMP_OP_DECL (mx_el_eq, M, S); \ + CMP_OP_DECL (mx_el_ne, M, S); + +#define MS_CMP_OP(F, OP, M, MC, S, SC, EMPTY_RESULT) \ + boolMatrix \ + F (const M& m, const S& s) \ + { \ + boolMatrix r; \ + \ + int nr = m.rows (); \ + int nc = m.cols (); \ + \ + if (nr == 0 || nc == 0) \ + r = EMPTY_RESULT; \ + else \ + { \ + r.resize (nr, nc); \ + \ + for (int j = 0; j < nc; j++) \ + for (int i = 0; i < nr; i++) \ + r.elem(i, j) = MC (m.elem(i, j)) OP SC (s); \ + } \ + \ + return r; \ + } -#define SM_OP(R, OP, S, M, F) \ +#define MS_CMP_OPS(M, CM, S, CS) \ + MS_CMP_OP (mx_el_lt, <, M, CM, S, CS, NBM) \ + MS_CMP_OP (mx_el_le, <=, M, CM, S, CS, NBM) \ + MS_CMP_OP (mx_el_ge, >=, M, CM, S, CS, NBM) \ + MS_CMP_OP (mx_el_gt, >, M, CM, S, CS, NBM) \ + MS_CMP_OP (mx_el_eq, ==, M, , S, , FBM) \ + MS_CMP_OP (mx_el_ne, !=, M, , S, , TBM) + +#define MS_BOOL_OP_DECLS(M, S) \ + BOOL_OP_DECL (mx_el_and, M, S); \ + BOOL_OP_DECL (mx_el_or, M, S); \ + +#define MS_BOOL_OP(F, OP, M, S) \ + boolMatrix \ + F (const M& m, const S& s) \ + { \ + boolMatrix r; \ + \ + int nr = m.rows (); \ + int nc = m.cols (); \ + \ + if (nr != 0 && nc != 0) \ + { \ + r.resize (nr, nc); \ + \ + for (int j = 0; j < nc; j++) \ + for (int i = 0; i < nr; i++) \ + r.elem(i, j) = (m.elem(i, j) != 0) OP (s != 0); \ + } \ + \ + return r; \ + } + +#define MS_BOOL_OPS(M, S) \ + MS_BOOL_OP (mx_el_and, &&, M, S) \ + MS_BOOL_OP (mx_el_or, ||, M, S) + +#define MS_OP_DECLS(R, M, S) \ + MS_BIN_OP_DECLS (R, M, S) \ + MS_CMP_OP_DECLS (M, S) \ + MS_BOOL_OP_DECLS (M, S) \ + +// scalar by matrix operations. + +#define SM_BIN_OP_DECLS(R, S, M) \ + BIN_OP_DECL (R, operator +, S, M); \ + BIN_OP_DECL (R, operator -, S, M); \ + BIN_OP_DECL (R, operator *, S, M); \ + BIN_OP_DECL (R, operator /, S, M); + +#define SM_BIN_OP(R, OP, S, M, F) \ R \ OP (const S& s, const M& m) \ { \ @@ -105,13 +261,94 @@ return r; \ } -#define SM_OPS(R, S, M) \ - SM_OP (R, operator +, S, M, add) \ - SM_OP (R, operator -, S, M, subtract) \ - SM_OP (R, operator *, S, M, multiply) \ - SM_OP (R, operator /, S, M, divide) +#define SM_BIN_OPS(R, S, M) \ + SM_BIN_OP (R, operator +, S, M, add) \ + SM_BIN_OP (R, operator -, S, M, subtract) \ + SM_BIN_OP (R, operator *, S, M, multiply) \ + SM_BIN_OP (R, operator /, S, M, divide) + +#define SM_CMP_OP_DECLS(S, M) \ + CMP_OP_DECL (mx_el_lt, S, M); \ + CMP_OP_DECL (mx_el_le, S, M); \ + CMP_OP_DECL (mx_el_ge, S, M); \ + CMP_OP_DECL (mx_el_gt, S, M); \ + CMP_OP_DECL (mx_el_eq, S, M); \ + CMP_OP_DECL (mx_el_ne, S, M); + +#define SM_CMP_OP(F, OP, S, SC, M, MC, EMPTY_RESULT) \ + boolMatrix \ + F (const S& s, const M& m) \ + { \ + boolMatrix r; \ + \ + int nr = m.rows (); \ + int nc = m.cols (); \ + \ + if (nr == 0 || nc == 0) \ + r = EMPTY_RESULT; \ + else \ + { \ + r.resize (nr, nc); \ + \ + for (int j = 0; j < nc; j++) \ + for (int i = 0; i < nr; i++) \ + r.elem(i, j) = SC (s) OP MC (m.elem(i, j)); \ + } \ + \ + return r; \ + } -#define MM_OP(R, OP, M1, M2, F) \ +#define SM_CMP_OPS(S, CS, M, CM) \ + SM_CMP_OP (mx_el_lt, <, S, CS, M, CM, NBM) \ + SM_CMP_OP (mx_el_le, <=, S, CS, M, CM, NBM) \ + SM_CMP_OP (mx_el_ge, >=, S, CS, M, CM, NBM) \ + SM_CMP_OP (mx_el_gt, >, S, CS, M, CM, NBM) \ + SM_CMP_OP (mx_el_eq, ==, S, , M, , FBM) \ + SM_CMP_OP (mx_el_ne, !=, S, , M, , TBM) + +#define SM_BOOL_OP_DECLS(S, M) \ + BOOL_OP_DECL (mx_el_and, S, M); \ + BOOL_OP_DECL (mx_el_or, S, M); \ + +#define SM_BOOL_OP(F, OP, S, M) \ + boolMatrix \ + F (const S& s, const M& m) \ + { \ + boolMatrix r; \ + \ + int nr = m.rows (); \ + int nc = m.cols (); \ + \ + if (nr != 0 && nc != 0) \ + { \ + r.resize (nr, nc); \ + \ + for (int j = 0; j < nc; j++) \ + for (int i = 0; i < nr; i++) \ + r.elem(i, j) = (s != 0) OP (m.elem(i, j) != 0); \ + } \ + \ + return r; \ + } + +#define SM_BOOL_OPS(S, M) \ + SM_BOOL_OP (mx_el_and, &&, S, M) \ + SM_BOOL_OP (mx_el_or, ||, S, M) + +#define SM_OP_DECLS(R, S, M) \ + SM_BIN_OP_DECLS (R, S, M) \ + SM_CMP_OP_DECLS (S, M) \ + SM_BOOL_OP_DECLS (S, M) \ + +// matrix by matrix operations. + +#define MM_BIN_OP_DECLS(R, M1, M2) \ + BIN_OP_DECL (R, operator +, M1, M2); \ + BIN_OP_DECL (R, operator -, M1, M2); \ + BIN_OP_DECL (R, product, M1, M2); \ + BIN_OP_DECL (R, quotient, M1, M2); + +#define MM_BIN_OP(R, OP, M1, M2, F) \ R \ OP (const M1& m1, const M2& m2) \ { \ @@ -136,13 +373,116 @@ return r; \ } -#define MM_OPS(R, M1, M2) \ - MM_OP (R, operator +, M1, M2, add) \ - MM_OP (R, operator -, M1, M2, subtract) \ - MM_OP (R, product, M1, M2, multiply) \ - MM_OP (R, quotient, M1, M2, divide) +#define MM_BIN_OPS(R, M1, M2) \ + MM_BIN_OP (R, operator +, M1, M2, add) \ + MM_BIN_OP (R, operator -, M1, M2, subtract) \ + MM_BIN_OP (R, product, M1, M2, multiply) \ + MM_BIN_OP (R, quotient, M1, M2, divide) + +#define MM_CMP_OP_DECLS(M1, M2) \ + CMP_OP_DECL (mx_el_lt, M1, M2); \ + CMP_OP_DECL (mx_el_le, M1, M2); \ + CMP_OP_DECL (mx_el_ge, M1, M2); \ + CMP_OP_DECL (mx_el_gt, M1, M2); \ + CMP_OP_DECL (mx_el_eq, M1, M2); \ + CMP_OP_DECL (mx_el_ne, M1, M2); + +#define MM_CMP_OP(F, OP, M1, C1, M2, C2, ONE_MT_RESULT, TWO_MT_RESULT) \ + boolMatrix \ + F (const M1& m1, const M2& m2) \ + { \ + boolMatrix r; \ + \ + int m1_nr = m1.rows (); \ + int m1_nc = m1.cols (); \ + \ + int m2_nr = m2.rows (); \ + int m2_nc = m2.cols (); \ + \ + if (m1_nr == m2_nr && m1_nc == m2_nc) \ + { \ + if (m1_nr == 0 && m1_nc == 0) \ + r = TWO_MT_RESULT; \ + else \ + { \ + r.resize (m1_nr, m1_nc); \ + \ + for (int j = 0; j < m1_nc; j++) \ + for (int i = 0; i < m1_nr; i++) \ + r.elem(i, j) = C1 (m1.elem(i, j)) OP C2 (m2.elem(i, j)); \ + } \ + } \ + else \ + { \ + if ((m1_nr == 0 && m1_nc == 0) || (m2_nr == 0 && m2_nc == 0)) \ + r = ONE_MT_RESULT; \ + else \ + gripe_nonconformant (#F, m1_nr, m1_nc, m2_nr, m2_nc); \ + } \ + \ + return r; \ + } -#define SDM_OP(R, OP, S, DM, OPEQ) \ +#define MM_CMP_OPS(M1, C1, M2, C2) \ + MM_CMP_OP (mx_el_lt, <, M1, C1, M2, C2, NBM, NBM) \ + MM_CMP_OP (mx_el_le, <=, M1, C1, M2, C2, NBM, NBM) \ + MM_CMP_OP (mx_el_ge, >=, M1, C1, M2, C2, NBM, NBM) \ + MM_CMP_OP (mx_el_gt, >, M1, C1, M2, C2, NBM, NBM) \ + MM_CMP_OP (mx_el_eq, ==, M1, , M2, , FBM, TBM) \ + MM_CMP_OP (mx_el_ne, !=, M1, , M2, , TBM, FBM) + +#define MM_BOOL_OP_DECLS(M1, M2) \ + BOOL_OP_DECL (mx_el_and, M1, M2); \ + BOOL_OP_DECL (mx_el_or, M1, M2); + +#define MM_BOOL_OP(F, OP, M1, M2) \ + boolMatrix \ + F (const M1& m1, const M2& m2) \ + { \ + boolMatrix r; \ + \ + int m1_nr = m1.rows (); \ + int m1_nc = m1.cols (); \ + \ + int m2_nr = m2.rows (); \ + int m2_nc = m2.cols (); \ + \ + if (m1_nr == m2_nr && m1_nc == m2_nc) \ + { \ + if (m1_nr != 0 || m1_nc != 0) \ + { \ + r.resize (m1_nr, m1_nc); \ + \ + for (int j = 0; j < m1_nc; j++) \ + for (int i = 0; i < m1_nr; i++) \ + r.elem(i, j) = (m1.elem(i, j) != 0) OP (m2.elem(i, j) != 0); \ + } \ + } \ + else \ + { \ + if ((m1_nr != 0 || m1_nc != 0) && (m2_nr != 0 || m2_nc != 0)) \ + gripe_nonconformant (#F, m1_nr, m1_nc, m2_nr, m2_nc); \ + } \ + \ + return r; \ + } + +#define MM_BOOL_OPS(M1, M2) \ + MM_BOOL_OP (mx_el_and, &&, M1, M2) \ + MM_BOOL_OP (mx_el_or, ||, M1, M2) + +#define MM_OP_DECLS(R, M1, M2) \ + MM_BIN_OP_DECLS (R, M1, M2) \ + MM_CMP_OP_DECLS (M1, M2) \ + MM_BOOL_OP_DECLS (M1, M2) + +// scalar by diagonal matrix operations. + +#define SDM_BIN_OP_DECLS(R, S, DM) \ + BIN_OP_DECL (R, operator +, S, DM); \ + BIN_OP_DECL (R, operator -, S, DM); + +#define SDM_BIN_OP(R, OP, S, DM, OPEQ) \ R \ OP (const S& s, const DM& dm) \ { \ @@ -154,16 +494,25 @@ int len = dm.length (); \ \ for (int i = 0; i < len; i++) \ - r.elem (i, i) OPEQ dm.elem (i, i); \ + r.elem(i, i) OPEQ dm.elem(i, i); \ \ return r; \ } -#define SDM_OPS(R, S, DM) \ - SDM_OP (R, operator +, S, DM, +=) \ - SDM_OP (R, operator -, S, DM, -=) +#define SDM_BIN_OPS(R, S, DM) \ + SDM_BIN_OP (R, operator +, S, DM, +=) \ + SDM_BIN_OP (R, operator -, S, DM, -=) + +#define SDM_OP_DECLS(R, S, DM) \ + SDM_BIN_OP_DECLS(R, S, DM) -#define DMS_OP(R, OP, DM, S, SGN) \ +// diagonal matrix by scalar operations. + +#define DMS_BIN_OP_DECLS(R, DM, S) \ + BIN_OP_DECL (R, operator +, DM, S); \ + BIN_OP_DECL (R, operator -, DM, S); + +#define DMS_BIN_OP(R, OP, DM, S, SGN) \ R \ OP (const DM& dm, const S& s) \ { \ @@ -175,16 +524,26 @@ int len = dm.length (); \ \ for (int i = 0; i < len; i++) \ - r.elem (i, i) += dm.elem (i, i); \ + r.elem(i, i) += dm.elem(i, i); \ \ return r; \ } -#define DMS_OPS(R, DM, S) \ - DMS_OP (R, operator +, DM, S, ) \ - DMS_OP (R, operator -, DM, S, -) +#define DMS_BIN_OPS(R, DM, S) \ + DMS_BIN_OP (R, operator +, DM, S, ) \ + DMS_BIN_OP (R, operator -, DM, S, -) + +#define DMS_OP_DECLS(R, DM, S) \ + DMS_BIN_OP_DECLS(R, DM, S) -#define MDM_OP(R, OP, M, DM, OPEQ) \ +// matrix by diagonal matrix operations. + +#define MDM_BIN_OP_DECLS(R, M, DM) \ + BIN_OP_DECL (R, operator +, M, DM); \ + BIN_OP_DECL (R, operator -, M, DM); \ + BIN_OP_DECL (R, operator *, M, DM); + +#define MDM_BIN_OP(R, OP, M, DM, OPEQ) \ R \ OP (const M& m, const DM& dm) \ { \ @@ -209,7 +568,7 @@ int len = dm.length (); \ \ for (int i = 0; i < len; i++) \ - r.elem (i, i) OPEQ dm.elem (i, i); \ + r.elem(i, i) OPEQ dm.elem(i, i); \ } \ } \ \ @@ -238,15 +597,15 @@ { \ for (int j = 0; j < dm.length (); j++) \ { \ - if (dm.elem (j, j) == 1.0) \ + if (dm.elem(j, j) == 1.0) \ { \ for (int i = 0; i < m_nr; i++) \ - r.elem (i, j) = m.elem (i, j); \ + r.elem(i, j) = m.elem(i, j); \ } \ - else if (dm.elem (j, j) != 0.0) \ + else if (dm.elem(j, j) != 0.0) \ { \ for (int i = 0; i < m_nr; i++) \ - r.elem (i, j) = dm.elem (j, j) * m.elem (i, j); \ + r.elem(i, j) = dm.elem(j, j) * m.elem(i, j); \ } \ } \ } \ @@ -255,14 +614,24 @@ return r; \ } -#define MDM_OPS(R, M, DM) \ - MDM_OP (R, operator +, M, DM, +=) \ - MDM_OP (R, operator -, M, DM, -=) \ +#define MDM_BIN_OPS(R, M, DM) \ + MDM_BIN_OP (R, operator +, M, DM, +=) \ + MDM_BIN_OP (R, operator -, M, DM, -=) \ MDM_MULTIPLY_OP (R, M, DM) +#define MDM_OP_DECLS(R, M, DM) \ + MDM_BIN_OP_DECLS(R, M, DM) + +// diagonal matrix by matrix operations. + // XXX FIXME XXX -- DM - M will not give the correct result. -#define DMM_OP(R, OP, DM, M, OPEQ) \ +#define DMM_BIN_OP_DECLS(R, DM, M) \ + BIN_OP_DECL (R, operator +, DM, M); \ + BIN_OP_DECL (R, operator -, DM, M); \ + BIN_OP_DECL (R, operator *, DM, M); + +#define DMM_BIN_OP(R, OP, DM, M, OPEQ) \ R \ OP (const DM& dm, const M& m) \ { \ @@ -285,7 +654,7 @@ int len = dm.length (); \ \ for (int i = 0; i < len; i++) \ - r.elem (i, i) OPEQ dm.elem (i, i); \ + r.elem(i, i) OPEQ dm.elem(i, i); \ } \ else \ r.resize (m_nr, m_nc); \ @@ -316,15 +685,15 @@ { \ for (int i = 0; i < dm.length (); i++) \ { \ - if (dm.elem (i, i) == 1.0) \ + if (dm.elem(i, i) == 1.0) \ { \ for (int j = 0; j < m_nc; j++) \ - r.elem (i, j) = m.elem (i, j); \ + r.elem(i, j) = m.elem(i, j); \ } \ - else if (dm.elem (i, i) != 0.0) \ + else if (dm.elem(i, i) != 0.0) \ { \ for (int j = 0; j < m_nc; j++) \ - r.elem (i, j) = dm.elem (i, i) * m.elem (i, j); \ + r.elem(i, j) = dm.elem(i, i) * m.elem(i, j); \ } \ } \ } \ @@ -333,37 +702,22 @@ return r; \ } -#define DMM_OPS(R, DM, M) \ - DMM_OP (R, operator +, DM, M, +=) \ - DMM_OP (R, operator -, DM, M, -=) \ +#define DMM_BIN_OPS(R, DM, M) \ + DMM_BIN_OP (R, operator +, DM, M, +=) \ + DMM_BIN_OP (R, operator -, DM, M, -=) \ DMM_MULTIPLY_OP(R, DM, M) -#define MM_OP(R, OP, M1, M2, F) \ - R \ - OP (const M1& m1, const M2& m2) \ - { \ - R r; \ - \ - int m1_nr = m1.rows (); \ - int m1_nc = m1.cols (); \ - \ - int m2_nr = m2.rows (); \ - int m2_nc = m2.cols (); \ - \ - if (m1_nr != m2_nr || m1_nc != m2_nc) \ - gripe_nonconformant (#OP, m1_nr, m1_nc, m2_nr, m2_nc); \ - else \ - { \ - r.resize (m1_nr, m1_nc); \ - \ - if (m1_nr > 0 && m1_nc > 0) \ - F ## _vv (r.fortran_vec (), m1.data (), m2.data (), m1_nr * m1_nc); \ - } \ - \ - return r; \ - } +#define DMM_OP_DECLS(R, DM, M) \ + DMM_BIN_OP_DECLS(R, DM, M) + +// diagonal matrix by diagonal matrix operations. -#define DMDM_OP(R, OP, DM1, DM2, F) \ +#define DMDM_BIN_OP_DECLS(R, DM1, DM2) \ + BIN_OP_DECL (R, operator +, DM1, DM2); \ + BIN_OP_DECL (R, operator -, DM1, DM2); \ + BIN_OP_DECL (R, product, DM1, DM2); + +#define DMDM_BIN_OP(R, OP, DM1, DM2, F) \ R \ OP (const DM1& dm1, const DM2& dm2) \ { \ @@ -389,10 +743,13 @@ return r; \ } -#define DMDM_OPS(R, DM1, DM2) \ - DMDM_OP (R, operator +, DM1, DM2, add) \ - DMDM_OP (R, operator -, DM1, DM2, subtract) \ - DMDM_OP (R, product, DM1, DM2, multiply) +#define DMDM_BIN_OPS(R, DM1, DM2) \ + DMDM_BIN_OP (R, operator +, DM1, DM2, add) \ + DMDM_BIN_OP (R, operator -, DM1, DM2, subtract) \ + DMDM_BIN_OP (R, product, DM1, DM2, multiply) + +#define DMDM_OP_DECLS(R, DM1, DM2) \ + DMDM_BIN_OP_DECLS (R, DM1, DM2) #endif