Mercurial > hg > octave-lyh
diff scripts/linear-algebra/krylov.m @ 3499:3e3e14ad5149
[project @ 2000-01-31 05:18:07 by jwe]
author | jwe |
---|---|
date | Mon, 31 Jan 2000 05:18:13 +0000 |
parents | e031284eea27 |
children | 22bd65326ec1 |
line wrap: on
line diff
--- a/scripts/linear-algebra/krylov.m +++ b/scripts/linear-algebra/krylov.m @@ -17,9 +17,9 @@ ## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA. ## -*- texinfo -*- -## @deftypefn {Function File} {[@var{U}, @var{H}, @var{nu}] =} krylov (@var{A}, @var{V}, @var{k}, @var{eps1}, @var{pflg}); +## @deftypefn {Function File} {[@var{u}, @var{h}, @var{nu}] =} krylov (@var{a}, @var{v}, @var{k}, @var{eps1}, @var{pflg}); ## construct orthogonal basis U of block Krylov subspace; -## [V AV A^2*V ... A^(k+1)*V]; +## [v a*v a^2*v ... a^(k+1)*v]; ## method used: householder reflections to guard against loss of ## orthogonality ## eps1: threshhold for 0 (default: 1e-12) @@ -29,12 +29,12 @@ ## 1 : pivoting performed ## ## outputs: -## Uret: orthogonal basis of block krylov subspace -## H: Hessenberg matrix; if V is a vector then A U = U H -## otherwise H is meaningless -## nu: dimension of span of krylov subspace (based on eps1) -## if B is a vector and k > m-1, krylov returns H = the Hessenberg -## decompostion of A. +## u: orthogonal basis of block krylov subspace +## h: Hessenberg matrix; if v is a vector then a u = u h +## otherwise h is meaningless +## nu: dimension of span of krylov subspace (based on eps1) +## if b is a vector and k > m-1, krylov returns h = the Hessenberg +## decompostion of a. ## ## Reference: Hodel and Misra, "Partial Pivoting in the Computation of ## Krylov Subspaces", to be submitted to Linear Algebra and its