Mercurial > hg > octave-lyh
diff src/DLD-FUNCTIONS/sparse.cc @ 10840:89f4d7e294cc
Grammarcheck .cc files
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Sat, 31 Jul 2010 11:18:11 -0700 |
parents | 3140cb7a05a1 |
children | a4f482e66b65 |
line wrap: on
line diff
--- a/src/DLD-FUNCTIONS/sparse.cc +++ b/src/DLD-FUNCTIONS/sparse.cc @@ -58,7 +58,7 @@ DEFUN_DLD (sparse, args, , "-*- texinfo -*-\n\ -@deftypefn {Loadable Function} {@var{s} =} sparse (@var{a})\n\ +@deftypefn {Loadable Function} {@var{s} =} sparse (@var{a})\n\ @deftypefnx {Loadable Function} {@var{s} =} sparse (@var{i}, @var{j}, @var{sv}, @var{m}, @var{n}, @var{nzmax})\n\ @deftypefnx {Loadable Function} {@var{s} =} sparse (@var{i}, @var{j}, @var{sv})\n\ @deftypefnx {Loadable Function} {@var{s} =} sparse (@var{i}, @var{j}, @var{s}, @var{m}, @var{n}, \"unique\")\n\ @@ -71,8 +71,8 @@ of real of complex values @var{sv}, overall dimensions @var{m} and @var{n}\n\ of the sparse matrix. The argument @code{nzmax} is ignored but accepted for\n\ compatibility with @sc{matlab}. If @var{m} or @var{n} are not specified their\n\ -values are derived from the maximum index in the vectors @var{i} and @var{j}\n\ -as given by @code{@var{m} = max (@var{i})}, @code{@var{n} = max (@var{j})}.\n\ +values are derived from the maximum index in the vectors @var{i} and @var{j} as\n\ +given by @code{@var{m} = max (@var{i})}, @code{@var{n} = max (@var{j})}.\n\ \n\ @strong{Note}: if multiple values are specified with the same\n\ @var{i}, @var{j} indices, the corresponding values in @var{s} will\n\ @@ -214,7 +214,9 @@ \n\ @itemize\n\ @item @code{@var{s}(I:J) = @var{x}}\n\ +\n\ @item @code{@var{s}(:,I:J) = @var{x}}\n\ +\n\ @item @code{@var{s}(K:L,I:J) = @var{x}}\n\ @end itemize\n\ \n\ @@ -222,15 +224,19 @@ \n\ @itemize\n\ @item the assignment does not decrease nnz(@var{S}).\n\ +\n\ @item after the assignment, nnz(@var{S}) does not exceed @var{nz}.\n\ +\n\ @item no index is out of bounds.\n\ @end itemize\n\ \n\ -Partial movement of data may still occur, but in general the assignment will be more\n\ -memory and time-efficient under these circumstances. In particular, it is possible\n\ -to efficiently build a pre-allocated sparse matrix from contiguous block of columns.\n\ +Partial movement of data may still occur, but in general the assignment will be\n\ +more memory and time-efficient under these circumstances. In particular, it is\n\ +possible to efficiently build a pre-allocated sparse matrix from contiguous\n\ +block of columns.\n\ \n\ -The amount of pre-allocated memory for a given matrix may be queried using the function\n\ +The amount of pre-allocated memory for a given matrix may be queried using the\n\ +function\n\ @code{nzmax}.\n\ @seealso{nzmax, sparse}\n\ @end deftypefn")