Mercurial > hg > octave-lyh
diff scripts/general/interpn.m @ 6702:b2391d403ed2
[project @ 2007-06-12 21:39:26 by dbateman]
author | dbateman |
---|---|
date | Tue, 12 Jun 2007 21:39:27 +0000 |
parents | |
children | 01036667884a |
line wrap: on
line diff
new file mode 100644 --- /dev/null +++ b/scripts/general/interpn.m @@ -0,0 +1,218 @@ +## Copyright (C) 2007 David Bateman +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 2, or (at your option) +## any later version. +## +## Octave is distributed in the hope that it will be useful, but +## WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +## General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, write to the Free +## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA +## 02110-1301, USA. + +## -*- texinfo -*- +## @deftypefn {Function File} {@var{vi} =} interpn (@var{x1}, @var{x2}, @dots{}, @var{v}, @var{y1}, @var{y2}, @dots{}) +## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{y1}, @var{y2}, @dots{}) +## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{m}) +## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}) +## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method}) +## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method}, @var{extrapval}) +## +## Perform @var{n}-dimensional interpolation, where @var{n} is at least two. +## Each element of then @var{n}-dimensional array @var{v} represents a value +## at a location given by the parameters @var{x1}, @var{x2}, @dots{}, @var{xn}. +## The parameters @var{x1}, @var{x2}, @dots{}, @var{xn} are either +## @var{n}-dimensional arrays of the same size as the array @var{v} in +## the 'ndgrid' format or vectors. The parameters @var{y1}, etc respect a +## similar format to @var{x1}, etc, and they represent the points at which +## the array @var{vi} is interpolated. +## +## If @var{x1}, @dots{}, @var{xn} are ommitted, they are assumed to be +## @code{x1 = 1 : size (@var{v}, 1)}, etc. If @var{m} is specified, then +## the interpolation adds a point half way between each of the interplation +## points. This process is performed @var{m} times. If only @var{v} is +## specified, then @var{m} is assumed to be @code{1}. +## +## Method is one of: +## +## @table @asis +## @item 'nearest' +## Return the nearest neighbour. +## @item 'linear' +## Linear interpolation from nearest neighbours. +## @item 'cubic' +## Cubic interpolation from four nearest neighbours (not implemented yet). +## @item 'spline' +## Cubic spline interpolation--smooth first and second derivatives +## throughout the curve. +## @end table +## +## The default method is 'linear'. +## +## If @var{extrap} is the string 'extrap', then extrapolate values beyond +## the endpoints. If @var{extrap} is a number, replace values beyond the +## endpoints with that number. If @var{extrap} is missing, assume NaN. +## @seealso{interp1, interp2, spline, ndgrid} +## @end deftypefn + +function vi = interpn (varargin) + + method = "linear"; + extrapval = NaN; + nargs = nargin; + + if (nargin < 1) + print_usage (); + endif + + if (ischar (varargin {end})) + method = varargin {end}; + nargs = nargs - 1; + elseif (ischar (varargin {end - 1})) + if (! isnumeric (vargin {end}) || ! isscalar (vargin {end})) + error ("extrapal is expected to be a numeric scalar"); + endif + method = varargin {end - 1}; + nargs = nargs - 2; + endif + + if (nargs < 3) + v = varargin {1}; + m = 1; + if (nargs == 2) + m = varargin {2}; + if (! isnumeric (m) || ! isscalar (m) || floor (m) != m) + error ("m is expected to be a integer scalar"); + endif + endif + sz = size (v); + nd = ndims (v); + x = cell (1, nd); + y = cell (1, nd); + for i = 1 : nd; + x{i} = 1 : sz(i); + y{i} = 1 : (1 / (2 ^ m)) : sz(i); + endfor + elseif (! isvector (varargin {1}) && nargs == (ndims (varargin {1}) + 1)) + v = varargin {1}; + sz = size (v); + nd = ndims (v); + x = cell (1, nd); + y = varargin (2 : nargs); + for i = 1 : nd; + x{i} = 1 : sz(i); + endfor + elseif (rem (nargs, 2) == 1 && nargs == + (2 * ndims (varargin {ceil (nargs / 2)})) + 1) + nv = ceil (nargs / 2); + v = varargin {nv}; + sz = size (v); + nd = ndims (v); + x = varargin (1 : (nv - 1)); + y = varargin ((nv + 1) : nargs); + else + error ("wrong number or incorrectly formatted input arguments"); + endif + + if (any (! cellfun (@isvector, x))) + for i = 2 : nd + if (! size_equal (x{1}, x{i}) || ! size_equal (x{i}, v)) + error ("dimensional mismatch"); + endif + idx (1 : nd) = {1}; + idx (i) = ":"; + x{i} = x{i}(idx{:}); + endfor + idx (1 : nd) = {1}; + idx (1) = ":"; + x{1} = x{1}(idx{:}); + endif + + if (strcmp (method, "linear") || strcmp (method, "nearest")) + if (all (cellfun (@isvector, y))) + [y{:}] = ndgrid (y{:}); + endif + elseif (any (! cellfun (@isvector, x))) + for i = 1 : nd + idx (1 : nd) = {1}; + idx (i) = ":"; + y{i} = y{i}(idx{:}); + endfor + endif + + method = tolower (method); + if (strcmp (method, "linear")) + vi = __lin_interpn__ (x{:}, v, y{:}); + vi (vi == NaN) = extrapval; + elseif (strcmp (method, "nearest")) + yshape = size (y{1}); + yidx = cell (1, nd); + for i = 1 : nd + y{i} = y{i}(:); + yidx{i} = lookup (x{i}(2:end-1), y{i}) + 1; + endfor + idx = cell (1,nd); + for i = 1 : nd + idx {i} = yidx{i} + (y{i} - x{i}(yidx{i}).' > ... + x{i}(yidx{i} + 1).' - y{i}); + endfor + vi = v (sub2ind (sz, idx{:})); + idx = zeros (prod(yshape),1); + for i = 1 : nd + idx |= y{i} < min (x{i}(:)) | y{i} > max (x{i}(:)); + endfor + vi(idx) = extrapval; + vi = reshape (vi, yshape); + elseif (strcmp (method, "spline")) + vi = __splinen__ (x, v, y, extrapval, "interpn"); + elseif (strcmp (method, "cubic")) + error ("cubic interpolation not yet implemented"); + else + error ("unrecognized interpolation method"); + endif + +endfunction + +%!demo +%! A=[13,-1,12;5,4,3;1,6,2]; +%! x=[0,1,4]; y=[10,11,12]; +%! xi=linspace(min(x),max(x),17); +%! yi=linspace(min(y),max(y),26)'; +%! mesh(xi,yi,interpn(x,y,A.',xi,yi,"linear").'); +%! [x,y] = meshgrid(x,y); +%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; + +%!demo +%! A=[13,-1,12;5,4,3;1,6,2]; +%! x=[0,1,4]; y=[10,11,12]; +%! xi=linspace(min(x),max(x),17); +%! yi=linspace(min(y),max(y),26)'; +%! mesh(xi,yi,interpn(x,y,A.',xi,yi,"nearest").'); +%! [x,y] = meshgrid(x,y); +%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; + +%!#demo +%! A=[13,-1,12;5,4,3;1,6,2]; +%! x=[0,1,2]; y=[10,11,12]; +%! xi=linspace(min(x),max(x),17); +%! yi=linspace(min(y),max(y),26)'; +%! mesh(xi,yi,interpn(x,y,A.',xi,yi,"cubic").'); +%! [x,y] = meshgrid(x,y); +%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; + +%!demo +%! A=[13,-1,12;5,4,3;1,6,2]; +%! x=[0,1,2]; y=[10,11,12]; +%! xi=linspace(min(x),max(x),17); +%! yi=linspace(min(y),max(y),26)'; +%! mesh(xi,yi,interpn(x,y,A.',xi,yi,"spline").'); +%! [x,y] = meshgrid(x,y); +%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; +