diff scripts/general/interpn.m @ 6702:b2391d403ed2

[project @ 2007-06-12 21:39:26 by dbateman]
author dbateman
date Tue, 12 Jun 2007 21:39:27 +0000
parents
children 01036667884a
line wrap: on
line diff
new file mode 100644
--- /dev/null
+++ b/scripts/general/interpn.m
@@ -0,0 +1,218 @@
+## Copyright (C) 2007 David Bateman
+##
+## This file is part of Octave.
+##
+## Octave is free software; you can redistribute it and/or modify it
+## under the terms of the GNU General Public License as published by
+## the Free Software Foundation; either version 2, or (at your option)
+## any later version.
+##
+## Octave is distributed in the hope that it will be useful, but
+## WITHOUT ANY WARRANTY; without even the implied warranty of
+## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+## General Public License for more details.
+##
+## You should have received a copy of the GNU General Public License
+## along with Octave; see the file COPYING.  If not, write to the Free
+## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+## 02110-1301, USA.
+
+## -*- texinfo -*-
+## @deftypefn {Function File} {@var{vi} =} interpn (@var{x1}, @var{x2}, @dots{}, @var{v}, @var{y1}, @var{y2}, @dots{})
+## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{y1}, @var{y2}, @dots{})
+## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{m})
+## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v})
+## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method})
+## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method}, @var{extrapval})
+##
+## Perform @var{n}-dimensional interpolation, where @var{n} is at least two. 
+## Each element of then @var{n}-dimensional array @var{v} represents a value 
+## at a location given by the parameters @var{x1}, @var{x2}, @dots{}, @var{xn}. 
+## The parameters @var{x1}, @var{x2}, @dots{}, @var{xn} are either 
+## @var{n}-dimensional arrays of the same size as the array @var{v} in 
+## the 'ndgrid' format or vectors. The parameters @var{y1}, etc respect a 
+## similar format to @var{x1}, etc, and they represent the points at which
+## the array @var{vi} is interpolated.
+##
+## If @var{x1}, @dots{}, @var{xn} are ommitted, they are assumed to be 
+## @code{x1 = 1 : size (@var{v}, 1)}, etc. If @var{m} is specified, then
+## the interpolation adds a point half way between each of the interplation 
+## points. This process is performed @var{m} times. If only @var{v} is 
+## specified, then @var{m} is assumed to be @code{1}.
+##
+## Method is one of:
+##
+## @table @asis
+## @item 'nearest'
+## Return the nearest neighbour.
+## @item 'linear'
+## Linear interpolation from nearest neighbours.
+## @item 'cubic'
+## Cubic interpolation from four nearest neighbours (not implemented yet).
+## @item 'spline'
+## Cubic spline interpolation--smooth first and second derivatives
+## throughout the curve.
+## @end table
+##
+## The default method is 'linear'.
+##
+## If @var{extrap} is the string 'extrap', then extrapolate values beyond
+## the endpoints.  If @var{extrap} is a number, replace values beyond the
+## endpoints with that number.  If @var{extrap} is missing, assume NaN.
+## @seealso{interp1, interp2, spline, ndgrid}
+## @end deftypefn
+
+function vi = interpn (varargin)
+
+  method = "linear";
+  extrapval = NaN;
+  nargs = nargin;
+
+  if (nargin < 1)
+    print_usage ();
+  endif
+
+  if (ischar (varargin {end}))
+    method = varargin {end};
+    nargs = nargs - 1;
+  elseif (ischar (varargin {end - 1}))
+    if (! isnumeric (vargin {end}) || ! isscalar (vargin {end}))
+      error ("extrapal is expected to be a numeric scalar");
+    endif
+    method = varargin {end - 1};
+    nargs = nargs - 2;
+  endif
+
+  if (nargs < 3)
+    v = varargin {1};
+    m = 1;
+    if (nargs == 2)
+      m = varargin {2};
+      if (! isnumeric (m) || ! isscalar (m) || floor (m) != m)
+	error ("m is expected to be a integer scalar");
+      endif
+    endif
+    sz = size (v);
+    nd = ndims (v);
+    x = cell (1, nd);
+    y = cell (1, nd);
+    for i = 1 : nd;
+      x{i} = 1 : sz(i);
+      y{i} = 1 : (1 / (2 ^ m)) : sz(i);
+    endfor
+  elseif (! isvector (varargin {1}) && nargs == (ndims (varargin {1}) + 1))
+    v = varargin {1};
+    sz = size (v);
+    nd = ndims (v);
+    x = cell (1, nd);
+    y = varargin (2 : nargs);
+    for i = 1 : nd;
+      x{i} = 1 : sz(i);
+    endfor
+  elseif (rem (nargs, 2) == 1 && nargs ==  
+	  (2 * ndims (varargin {ceil (nargs / 2)})) + 1)
+    nv = ceil (nargs / 2);
+    v = varargin {nv};
+    sz = size (v);
+    nd = ndims (v);
+    x = varargin (1 : (nv - 1));
+    y = varargin ((nv + 1) : nargs);
+  else
+    error ("wrong number or incorrectly formatted input arguments");
+  endif
+
+  if (any (! cellfun (@isvector, x)))
+    for i = 2 : nd
+      if (! size_equal (x{1}, x{i}) || ! size_equal (x{i}, v))
+	error ("dimensional mismatch");
+      endif
+      idx (1 : nd) = {1};
+      idx (i) = ":";
+      x{i} = x{i}(idx{:});
+    endfor
+    idx (1 : nd) = {1};
+    idx (1) = ":";
+    x{1} = x{1}(idx{:});
+  endif
+
+  if (strcmp (method, "linear") || strcmp (method, "nearest"))
+    if (all (cellfun (@isvector, y)))
+      [y{:}] = ndgrid (y{:});
+    endif
+  elseif (any (! cellfun (@isvector, x)))
+    for i = 1 : nd
+      idx (1 : nd) = {1};
+      idx (i) = ":";
+      y{i} = y{i}(idx{:});
+    endfor
+  endif
+
+  method = tolower (method);
+  if (strcmp (method, "linear"))
+    vi = __lin_interpn__ (x{:}, v, y{:});
+    vi (vi == NaN) = extrapval;
+  elseif (strcmp (method, "nearest"))
+    yshape = size (y{1});
+    yidx = cell (1, nd);
+    for i = 1 : nd
+      y{i} = y{i}(:);
+      yidx{i} = lookup (x{i}(2:end-1), y{i}) + 1;
+    endfor
+    idx = cell (1,nd);
+    for i = 1 : nd
+      idx {i} = yidx{i} + (y{i} - x{i}(yidx{i}).' > ...
+			   x{i}(yidx{i} + 1).' - y{i});
+    endfor
+    vi = v (sub2ind (sz, idx{:}));
+    idx = zeros (prod(yshape),1);
+    for i = 1 : nd
+      idx |= y{i} < min (x{i}(:)) | y{i} > max (x{i}(:));
+    endfor
+    vi(idx) = extrapval;
+    vi = reshape (vi, yshape); 
+  elseif (strcmp (method, "spline")) 
+    vi = __splinen__ (x, v, y, extrapval, "interpn");
+  elseif (strcmp (method, "cubic")) 
+    error ("cubic interpolation not yet implemented");
+  else
+    error ("unrecognized interpolation method");
+  endif
+
+endfunction
+
+%!demo
+%! A=[13,-1,12;5,4,3;1,6,2];
+%! x=[0,1,4]; y=[10,11,12];
+%! xi=linspace(min(x),max(x),17);
+%! yi=linspace(min(y),max(y),26)';
+%! mesh(xi,yi,interpn(x,y,A.',xi,yi,"linear").');
+%! [x,y] = meshgrid(x,y); 
+%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;
+
+%!demo
+%! A=[13,-1,12;5,4,3;1,6,2];
+%! x=[0,1,4]; y=[10,11,12];
+%! xi=linspace(min(x),max(x),17);
+%! yi=linspace(min(y),max(y),26)';
+%! mesh(xi,yi,interpn(x,y,A.',xi,yi,"nearest").');
+%! [x,y] = meshgrid(x,y); 
+%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;
+
+%!#demo
+%! A=[13,-1,12;5,4,3;1,6,2];
+%! x=[0,1,2]; y=[10,11,12];
+%! xi=linspace(min(x),max(x),17);
+%! yi=linspace(min(y),max(y),26)';
+%! mesh(xi,yi,interpn(x,y,A.',xi,yi,"cubic").');
+%! [x,y] = meshgrid(x,y); 
+%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;
+
+%!demo
+%! A=[13,-1,12;5,4,3;1,6,2];
+%! x=[0,1,2]; y=[10,11,12];
+%! xi=linspace(min(x),max(x),17);
+%! yi=linspace(min(y),max(y),26)';
+%! mesh(xi,yi,interpn(x,y,A.',xi,yi,"spline").');
+%! [x,y] = meshgrid(x,y); 
+%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;
+