Mercurial > hg > octave-lyh
diff scripts/control/system/is_stabilizable.m @ 3502:b5238ac1dca9
[project @ 2000-01-31 07:40:53 by jwe]
author | jwe |
---|---|
date | Mon, 31 Jan 2000 07:41:01 +0000 |
parents | 7923abdeb4e5 |
children | fb01838d0f38 |
line wrap: on
line diff
--- a/scripts/control/system/is_stabilizable.m +++ b/scripts/control/system/is_stabilizable.m @@ -17,16 +17,16 @@ ## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA. ## -*- texinfo -*- -## @deftypefn {Function File} {[@var{retval}, @var{U}] =} is_stabilizable (@var{sys}, @var{tol}) -## @deftypefnx {Function File} {[@var{retval}, @var{U}] =} is_stabilizable (@var{a}, @var{b}, @var{tol}) +## @deftypefn {Function File} {[@var{retval}, @var{u}] =} is_stabilizable (@var{sys}, @var{tol}) +## @deftypefnx {Function File} {[@var{retval}, @var{u}] =} is_stabilizable (@var{a}, @var{b}, @var{tol}) ## Logical check for system stabilizability (i.e., all unstable modes are controllable). ## ## Test for stabilizability is performed via an ordered Schur decomposition -## that reveals the unstable subspace of the system @var{A} matrix. +## that reveals the unstable subspace of the system @var{a} matrix. ## -## Returns @code{retval} = 1 if the system, @code{a}, is stabilizable, -## if the pair (@code{a}, @code{b}) is stabilizable, or 0 if not. -## @code{U} = orthogonal basis of controllable subspace. +## Returns @code{retval} = 1 if the system, @var{a}, is stabilizable, +## if the pair (@var{a}, @var{b}) is stabilizable, or 0 if not. +## @var{u} = orthogonal basis of controllable subspace. ## ## Controllable subspace is determined by applying Arnoldi iteration with ## complete re-orthogonalization to obtain an orthogonal basis of the