Mercurial > hg > octave-lyh
diff scripts/linear-algebra/onenormest.m @ 11587:c792872f8942
all script files: untabify and strip trailing whitespace
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 20 Jan 2011 17:35:29 -0500 |
parents | fd0a3ac60b0e |
children | 1577c6f80926 |
line wrap: on
line diff
--- a/scripts/linear-algebra/onenormest.m +++ b/scripts/linear-algebra/onenormest.m @@ -17,18 +17,18 @@ ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- -## @deftypefn {Function File} {[@var{est}, @var{v}, @var{w}, @var{iter}] =} onenormest (@var{A}, @var{t}) +## @deftypefn {Function File} {[@var{est}, @var{v}, @var{w}, @var{iter}] =} onenormest (@var{A}, @var{t}) ## @deftypefnx {Function File} {[@var{est}, @var{v}, @var{w}, @var{iter}] =} onenormest (@var{apply}, @var{apply_t}, @var{n}, @var{t}) ## ## Apply Higham and Tisseur's randomized block 1-norm estimator to ## matrix @var{A} using @var{t} test vectors. If @var{t} exceeds 5, then ## only 5 test vectors are used. ## -## If the matrix is not explicit, e.g., when estimating the norm of -## @code{inv (@var{A})} given an LU factorization, @code{onenormest} applies -## @var{A} and its conjugate transpose through a pair of functions -## @var{apply} and @var{apply_t}, respectively, to a dense matrix of size -## @var{n} by @var{t}. The implicit version requires an explicit dimension +## If the matrix is not explicit, e.g., when estimating the norm of +## @code{inv (@var{A})} given an LU factorization, @code{onenormest} applies +## @var{A} and its conjugate transpose through a pair of functions +## @var{apply} and @var{apply_t}, respectively, to a dense matrix of size +## @var{n} by @var{t}. The implicit version requires an explicit dimension ## @var{n}. ## ## Returns the norm estimate @var{est}, two vectors @var{v} and @@ -37,7 +37,7 @@ ## and the number of iterations @var{iter}. The number of ## iterations is limited to 10 and is at least 2. ## -## References: +## References: ## @itemize ## @item ## N.J. Higham and F. Tisseur, @cite{A Block Algorithm @@ -198,7 +198,7 @@ replacements = 2*(rand (n,numpar) < 0.5) - 1; S(:,partest) = replacements; endif - + Z = feval (apply_t, S); ## Now find the largest non-previously-visted index per