Mercurial > hg > octave-lyh
view scripts/polynomial/polyeig.m @ 15187:045ae93e8fe9
polyeig: return eigenvectors of the _correct_ size
author | Ed Meyer <eem2314@gmail.com> |
---|---|
date | Thu, 19 Jul 2012 04:53:34 +0100 |
parents | 504fec921af5 |
children | 2ad5e6212cd7 |
line wrap: on
line source
## Copyright (C) 2012 Fotios Kasolis ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{z} =} polyeig (@var{C0}, @var{C1}, @dots{}, @var{Cl}) ## @deftypefnx {Function File} {[ @var{v}, @var{z} ] =} polyeig (@var{C0}, @var{C1}, @dots{}, @var{Cl}) ## Solve the polynomial eigenvalue problem of degree @var{l}. ## ## Given a @var{n*n} matrix polynomial @var{C(s)} = @var{C0 + C1 s + @dots{} + Cl s^l} polyeig ## solves the eigenvalue problem (@var{C0} + @var{C1} + @dots{} + @var{Cl})v = 0. ## Note that the eigenvalues @var{z} are the zeros of the matrix polynomial. @var{z} is a ## @var{lxn} vector and @var{v} is a @var{(n x n)l} matrix with columns that correspond to ## the eigenvectors. ## @seealso{eig, eigs, compan} ## @end deftypefn ## Author: Fotios Kasolis function [ z, varargout ] = polyeig (varargin) if ( nargout > 2 ) print_usage (); endif nin = numel (varargin); n = zeros (1, nin); for cnt = 1 : nin if ! ( issquare (varargin{cnt}) ) error ("polyeig: coefficients must be square matrices"); endif n(cnt) = size (varargin{cnt}, 1); endfor if numel (unique (n)) > 1 error ("polyeig: coefficients must have the same dimensions"); endif n = unique (n); # matrix polynomial degree l = nin - 1; # form needed matrices C = [ zeros(n * (l - 1), n), eye(n * (l - 1)); -cell2mat(varargin(1 : end - 1)) ]; D = [ eye(n * (l - 1)), zeros(n * (l - 1), n); zeros(n, n * (l - 1)), varargin{end} ]; % solve generalized eigenvalue problem if ( isequal (nargout, 1) ) z = eig (C, D); else [ z, v ] = eig (C, D); varargout{1} = v; % return n-element eigenvectors normalized so % that the infinity-norm = 1 z = z(1:n,:); % max() takes the abs if complex: t = max(z); z /= diag(t); endif endfunction %!test %! C0 = [8, 0; 0, 4]; C1 = [1, 0; 0, 1]; %! [v,z] = polyeig (C0, C1); %! assert (isequal (z(1), -8), true); %! d = C0*v + C1*v*z %! assert (isequal (norm(d), 0.0), true);