Mercurial > hg > octave-lyh
view scripts/signal/bartlett.m @ 16207:0467d68ca891
move current_input_line to lexical_feedback class
* input.h, input.cc, lex.h, lex.ll (current_input_line): Declare as
member of lexical_feedback class.
(octave_base_reader::octave_gets, octave_terminal_reader::get_input,
octave_file_reader::get_input, octave_eval_string_reader::get_input):
Don't set current_input_line.
(octave_lexer::read): Set current_input_line.
* oct-parse.in.yy (octave_parser::bison_error): Use
curr_lexer->current_input_line.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Wed, 06 Mar 2013 19:39:48 -0500 |
parents | f3d52523cde1 |
children |
line wrap: on
line source
## Copyright (C) 1995-2012 Andreas Weingessel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} bartlett (@var{m}) ## Return the filter coefficients of a Bartlett (triangular) window of ## length @var{m}. ## ## For a definition of the Bartlett window, see e.g., A. V. Oppenheim & ## R. W. Schafer, @cite{Discrete-Time Signal Processing}. ## @end deftypefn ## Author: AW <Andreas.Weingessel@ci.tuwien.ac.at> ## Description: Coefficients of the Bartlett (triangular) window function c = bartlett (m) if (nargin != 1) print_usage (); endif if (! (isscalar (m) && (m == fix (m)) && (m > 0))) error ("bartlett: M has to be an integer > 0"); endif if (m == 1) c = 1; else m = m - 1; n = fix (m / 2); c = [2*(0:n)/m, 2-2*(n+1:m)/m]'; endif endfunction %!assert (bartlett (1), 1) %!assert (bartlett (2), zeros (2,1)) %!assert (bartlett (16), fliplr (bartlett (16))) %!assert (bartlett (15), fliplr (bartlett (15))) %!test %! N = 9; %! A = bartlett (N); %! assert (A(ceil (N/2)), 1); %!error bartlett () %!error bartlett (0.5) %!error bartlett (-1) %!error bartlett (ones (1,4))