Mercurial > hg > octave-lyh
view scripts/general/sph2cart.m @ 14383:07c55bceca23 stable
Fix guarded_eval() subfunction in fminunc (bug #35534).
* fminunc.m: Fix guarded_eval() subfunction in fminunc (bug #35534).
author | Olaf Till <olaf.till@uni-jena.de> |
---|---|
date | Wed, 15 Feb 2012 14:44:37 +0100 |
parents | 72c96de7a403 |
children | f3d52523cde1 |
line wrap: on
line source
## Copyright (C) 2000-2012 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{x}, @var{y}, @var{z}] =} sph2cart (@var{theta}, @var{phi}, @var{r}) ## @deftypefnx {Function File} {[@var{x}, @var{y}, @var{z}] =} sph2cart (@var{S}) ## @deftypefnx {Function File} {C =} sph2cart (@dots{}) ## Transform spherical to Cartesian coordinates. ## ## @var{theta} describes the angle relative to the positive x-axis. ## @var{phi} is the angle relative to the xy-plane. ## @var{r} is the distance to the origin @w{(0, 0, 0)}. ## @var{theta}, @var{phi}, and @var{r} must be the same shape, or scalar. ## If called with a single matrix argument then each row of @var{s} ## represents the spherical coordinate (@var{theta}, @var{phi}, @var{r}). ## ## If only a single return argument is requested then return a matrix ## @var{C} where each row represents one Cartesian coordinate ## (@var{x}, @var{y}, @var{z}). ## @seealso{cart2sph, pol2cart, cart2pol} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> ## Adapted-by: jwe function [x, y, z] = sph2cart (theta, phi, r) if (nargin != 1 && nargin != 3) print_usage (); endif if (nargin == 1) if (ismatrix (theta) && columns (theta) == 3) r = theta(:,3); phi = theta(:,2); theta = theta(:,1); else error ("sph2cart: matrix input must have 3 columns [THETA, PHI, R]"); endif elseif (nargin == 3) if (! ((ismatrix (theta) && ismatrix (phi) && ismatrix (r)) && (size_equal (theta, phi) || isscalar (theta) || isscalar (phi)) && (size_equal (theta, r) || isscalar (theta) || isscalar (r)) && (size_equal (phi, r) || isscalar (phi) || isscalar (r)))) error ("sph2cart: THETA, PHI, and R must be matrices of the same size, or scalar"); endif endif x = r .* cos (phi) .* cos (theta); y = r .* cos (phi) .* sin (theta); z = r .* sin (phi); if (nargout <= 1) x = [x, y, z]; endif endfunction %!test %! t = [0, 0, 0]; %! p = [0, 0, 0]; %! r = [0, 1, 2]; %! [x, y, z] = sph2cart (t, p, r); %! assert (x, r); %! assert (y, [0, 0, 0]); %! assert (z, [0, 0, 0]); %!test %! t = 0; %! p = [0, 0, 0]; %! r = [0, 1, 2]; %! [x, y, z] = sph2cart (t, p, r); %! assert (x, r); %! assert (y, [0, 0, 0]); %! assert (z, [0, 0, 0]); %!test %! t = [0, 0, 0]; %! p = 0; %! r = [0, 1, 2]; %! [x, y, z] = sph2cart (t, p, r); %! assert (x, r); %! assert (y, [0, 0, 0]); %! assert (z, [0, 0, 0]); %!test %! t = [0, 0.5, 1]*pi; %! p = [0, 0, 0]; %! r = 1; %! [x, y, z] = sph2cart (t, p, r); %! assert (x, [1, 0, -1], eps); %! assert (y, [0, 1, 0], eps); %! assert (z, [0, 0, 0], eps); %!test %! S = [ 0, 0, 1; 0.5*pi, 0, 1; pi, 0, 1]; %! C = [ 1, 0, 0; 0, 1, 0; -1, 0, 0]; %! assert (sph2cart(S), C, eps);