Mercurial > hg > octave-lyh
view scripts/geometry/griddata.m @ 14428:099bd779466c
test: Fix failing %!test in fileread.m
* fileread.m: Fix failing %!test.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Fri, 02 Mar 2012 22:14:27 -0800 |
parents | 3f6489feca1e |
children | 5d3a684236b0 |
line wrap: on
line source
## Copyright (C) 1999-2012 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{zi} =} griddata (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi}) ## @deftypefnx {Function File} {@var{zi} =} griddata (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi}, @var{method}) ## @deftypefnx {Function File} {[@var{xi}, @var{yi}, @var{zi}] =} griddata (@dots{}) ## ## Generate a regular mesh from irregular data using interpolation. ## The function is defined by @code{@var{z} = f (@var{x}, @var{y})}. ## Inputs @code{@var{x}, @var{y}, @var{z}} are vectors of the same length ## or @code{@var{x}, @var{y}} are vectors and @code{@var{z}} is matrix. ## ## The interpolation points are all @code{(@var{xi}, @var{yi})}. If ## @var{xi}, @var{yi} are vectors then they are made into a 2-D mesh. ## ## The interpolation method can be @code{"nearest"}, @code{"cubic"} or ## @code{"linear"}. If method is omitted it defaults to @code{"linear"}. ## @seealso{griddata3, griddatan, delaunay} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> ## Adapted-by: Alexander Barth <barth.alexander@gmail.com> ## xi and yi are not "meshgridded" if both are vectors ## of the same size (for compatibility) function [rx, ry, rz] = griddata (x, y, z, xi, yi, method = "linear") if (nargin < 5 || nargin > 7) print_usage (); endif if (ischar (method)) method = tolower (method); endif ## Meshgrid if x and y are vectors but z is matrix if (isvector (x) && isvector (y) && all ([numel(y), numel(x)] == size (z))) [x, y] = meshgrid (x, y); endif if (isvector (x) && isvector (y) && isvector (z)) if (! isequal (length (x), length (y), length (z))) error ("griddata: X, Y, and Z must be vectors of the same length"); endif elseif (! size_equal (x, y, z)) error ("griddata: lengths of X, Y must match the columns and rows of Z"); endif ## Meshgrid xi and yi if they are a row and column vector. if (rows (xi) == 1 && columns (yi) == 1) [xi, yi] = meshgrid (xi, yi); elseif (isvector (xi) && isvector (yi)) ## Otherwise, convert to column vectors xi = xi(:); yi = yi(:); endif if (! size_equal (xi, yi)) error ("griddata: XI and YI must be vectors or matrices of same size"); endif x = x(:); y = y(:); z = z(:); ## Triangulate data. tri = delaunay (x, y); zi = NaN (size (xi)); if (strcmp (method, "cubic")) error ("griddata: cubic interpolation not yet implemented"); elseif (strcmp (method, "nearest")) ## Search index of nearest point. idx = dsearch (x, y, tri, xi, yi); valid = !isnan (idx); zi(valid) = z(idx(valid)); elseif (strcmp (method, "linear")) ## Search for every point the enclosing triangle. tri_list = tsearch (x, y, tri, xi(:), yi(:)); ## Only keep the points within triangles. valid = !isnan (tri_list); tri_list = tri_list(valid); nr_t = rows (tri_list); tri = tri(tri_list,:); ## Assign x,y,z for each point of triangle. x1 = x(tri(:,1)); x2 = x(tri(:,2)); x3 = x(tri(:,3)); y1 = y(tri(:,1)); y2 = y(tri(:,2)); y3 = y(tri(:,3)); z1 = z(tri(:,1)); z2 = z(tri(:,2)); z3 = z(tri(:,3)); ## Calculate norm vector. N = cross ([x2-x1, y2-y1, z2-z1], [x3-x1, y3-y1, z3-z1]); ## Normalize. N = diag (norm (N, "rows")) \ N; ## Calculate D of plane equation ## Ax+By+Cz+D = 0; D = -(N(:,1) .* x1 + N(:,2) .* y1 + N(:,3) .* z1); ## Calculate zi by solving plane equation for xi, yi. zi(valid) = -(N(:,1).*xi(:)(valid) + N(:,2).*yi(:)(valid) + D) ./ N(:,3); else error ("griddata: unknown interpolation METHOD"); endif if (nargout == 3) rx = xi; ry = yi; rz = zi; elseif (nargout == 1) rx = zi; elseif (nargout == 0) mesh (xi, yi, zi); endif endfunction %!demo %! clf; %! colormap ("default"); %! x = 2*rand (100,1) - 1; %! y = 2*rand (size (x)) - 1; %! z = sin (2*(x.^2 + y.^2)); %! [xx,yy] = meshgrid (linspace (-1,1,32)); %! griddata (x,y,z,xx,yy); %! title ("nonuniform grid sampled at 100 points"); %!demo %! clf; %! colormap ("default"); %! x = 2*rand (1000,1) - 1; %! y = 2*rand (size (x)) - 1; %! z = sin (2*(x.^2 + y.^2)); %! [xx,yy] = meshgrid (linspace (-1,1,32)); %! griddata (x,y,z,xx,yy); %! title ("nonuniform grid sampled at 1000 points"); %!demo %! clf; %! colormap ("default"); %! x = 2*rand (1000,1) - 1; %! y = 2*rand (size (x)) - 1; %! z = sin (2*(x.^2 + y.^2)); %! [xx,yy] = meshgrid (linspace (-1,1,32)); %! griddata (x,y,z,xx,yy,"nearest"); %! title ("nonuniform grid sampled at 1000 points with nearest neighbor"); %!testif HAVE_QHULL %! [xx,yy] = meshgrid (linspace (-1,1,32)); %! x = xx(:); %! x = x + 10*(2*round (rand (size(x))) - 1) * eps; %! y = yy(:); %! y = y + 10*(2*round (rand (size(y))) - 1) * eps; %! z = sin (2*(x.^2 + y.^2)); %! zz = griddata (x,y,z,xx,yy,"linear"); %! zz2 = sin (2*(xx.^2 + yy.^2)); %! zz2(isnan (zz)) = NaN; %! assert (zz, zz2, 100*eps); %% Test input validation %!error griddata () %!error griddata (1) %!error griddata (1,2) %!error griddata (1,2,3) %!error griddata (1,2,3,4) %!error griddata (1,2,3,4,5,6,7) %!error <vectors of the same length> griddata (1:3, 1:3, 1:4, 1:3, 1:3) %!error <vectors of the same length> griddata (1:3, 1:4, 1:3, 1:3, 1:3) %!error <vectors of the same length> griddata (1:4, 1:3, 1:3, 1:3, 1:3) %!error <the columns and rows of Z> griddata (1:4, 1:3, ones (4,4), 1:3, 1:3) %!error <the columns and rows of Z> griddata (1:4, 1:3, ones (3,5), 1:3, 1:3) %!error <matrices of same size> griddata (1:3, 1:3, 1:3, 1:4, 1:3) %!error <matrices of same size> griddata (1:3, 1:3, 1:3, 1:3, 1:4)