Mercurial > hg > octave-lyh
view scripts/control/base/ltifr.m @ 7021:0b91144f9533 ss-2-9-15
[project @ 2007-10-13 14:34:06 by jwe]
author | jwe |
---|---|
date | Sat, 13 Oct 2007 14:34:07 +0000 |
parents | a1dbe9d80eee |
children | 4a375de63f66 |
line wrap: on
line source
## Copyright (C) 1996, 2000, 2002, 2004, 2005, 2007 ## Auburn University. All rights reserved. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{out} =} ltifr (@var{a}, @var{b}, @var{w}) ## @deftypefnx {Function File} {@var{out} =} ltifr (@var{sys}, @var{w}) ## Linear time invariant frequency response of single-input systems. ## ## @strong{Inputs} ## @table @var ## @item a ## @itemx b ## coefficient matrices of @math{dx/dt = A x + B u} ## @item sys ## system data structure ## @item w ## vector of frequencies ## @end table ## @strong{Output} ## @table @var ## @item out ## frequency response, that is: ## @end table ## @iftex ## @tex ## $$ G(j\omega) = (j\omega I-A)^{-1}B $$ ## @end tex ## @end iftex ## @ifinfo ## @example ## -1 ## G(s) = (jw I-A) B ## @end example ## @end ifinfo ## for complex frequencies @math{s = jw}. ## @end deftypefn ## Author: R. Bruce Tenison <btenison@eng.auburn.edu> ## Author: David Clem ## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu> ## Created: July 1995 ## updated by John Ingram August 1996 for system format function out = ltifr (a, b, w) if ((nargin < 2) || (nargin > 3)) error("incorrect number of input arguments"); endif if (nargin == 2) sys = a; w = b; if(!isstruct(sys)) error("two arguments: 1st must be a system data structure"); endif if (!isvector(w)) error("w must be a vector"); endif [nn,nz,mm,pp] = sysdimensions(sys); if(mm != 1) error("sys has %d > 1 inputs",mm); endif [a,b] = sys2ss(sys); else if (columns(a) != rows(b)), error("ltifr: A(%dx%d), B(%dx%d) not compatibly dimensioned", ... rows(a), columns(a), rows(b), columns(b)); endif if(columns(b) != 1) error("ltifr: b(%dx%d) must be a single column vector", ... rows(b),columns(b)); endif if (!issquare(a)) error("ltifr: A(%dx$d) must be square.",rows(a),columns(a)) endif endif if (!isvector(w)) error("w must be a vector"); endif ey = eye(size(a)); lw = length(w); out = ones(columns(a),lw); for ii=1:lw, out(:,ii) = (w(ii)*ey-a)\b; endfor endfunction