Mercurial > hg > octave-lyh
view libinterp/corefcn/hess.cc @ 17405:0bf2fc8562c9
doc: Update documentation for file and directory functions.
* libinterp/corefcn/dirfns.cc(Fpwd, Freaddir, Fmkdir, Frmdir, Freadlink, Ffnmatch): Redo docstring.
* libinterp/corefcn/dirfns.cc(Fcd): Redo docstring. Return previous working
directory if nargout > 0.
* libinterp/corefcn/dirfns.cc(Flink, Fsymlink, Frename): Redo docstring.
Re-order return values so that highest numbered value is assigned first to
avoid re-sizing octave_value_list each time.
* libinterp/corefcn/syscalls.cc(Flstat, Fmkfifo, FS_ISREG, FS_ISDIR, FS_ISCHR,
FS_ISBLK, FS_ISFIFO, FS_ISLNK, FS_ISSOCK): Redo docstring.
* scripts/general/isdir.m: Add more xrefs to @seealso.
* scripts/miscellaneous/copyfile.m: Add more xrefs to @seealso.
* scripts/miscellaneous/dir.m: Redo docstring.
* scripts/miscellaneous/ls.m: Add more xrefs to @seealso.m.
* scripts/miscellaneous/movefile.m: Add more xrefs to @seealso.
author | Rik <rik@octave.org> |
---|---|
date | Mon, 09 Sep 2013 14:30:31 -0700 |
parents | 53eaa83e4181 |
children |
line wrap: on
line source
/* Copyright (C) 1996-2012 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "CmplxHESS.h" #include "dbleHESS.h" #include "fCmplxHESS.h" #include "floatHESS.h" #include "defun.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" DEFUN (hess, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {@var{H} =} hess (@var{A})\n\ @deftypefnx {Built-in Function} {[@var{P}, @var{H}] =} hess (@var{A})\n\ @cindex Hessenberg decomposition\n\ Compute the Hessenberg decomposition of the matrix @var{A}.\n\ \n\ The Hessenberg decomposition is\n\ @tex\n\ $$\n\ A = PHP^T\n\ $$\n\ where $P$ is a square unitary matrix ($P^TP = I$), and $H$\n\ is upper Hessenberg ($H_{i,j} = 0, \\forall i \\ge j+1$).\n\ @end tex\n\ @ifnottex\n\ @code{@var{P} * @var{H} * @var{P}' = @var{A}} where @var{P} is a square\n\ unitary matrix (@code{@var{P}' * @var{P} = I}, using complex-conjugate\n\ transposition) and @var{H} is upper Hessenberg\n\ (@code{@var{H}(i, j) = 0 forall i >= j+1)}.\n\ @end ifnottex\n\ \n\ The Hessenberg decomposition is usually used as the first step in an\n\ eigenvalue computation, but has other applications as well (see Golub,\n\ Nash, and Van Loan, IEEE Transactions on Automatic Control, 1979).\n\ @seealso{eig, chol, lu, qr, qz, schur, svd}\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin != 1 || nargout > 2) { print_usage (); return retval; } octave_value arg = args(0); octave_idx_type nr = arg.rows (); octave_idx_type nc = arg.columns (); int arg_is_empty = empty_arg ("hess", nr, nc); if (arg_is_empty < 0) return retval; else if (arg_is_empty > 0) return octave_value_list (2, Matrix ()); if (nr != nc) { gripe_square_matrix_required ("hess"); return retval; } if (arg.is_single_type ()) { if (arg.is_real_type ()) { FloatMatrix tmp = arg.float_matrix_value (); if (! error_state) { FloatHESS result (tmp); if (nargout <= 1) retval(0) = result.hess_matrix (); else { retval(1) = result.hess_matrix (); retval(0) = result.unitary_hess_matrix (); } } } else if (arg.is_complex_type ()) { FloatComplexMatrix ctmp = arg.float_complex_matrix_value (); if (! error_state) { FloatComplexHESS result (ctmp); if (nargout <= 1) retval(0) = result.hess_matrix (); else { retval(1) = result.hess_matrix (); retval(0) = result.unitary_hess_matrix (); } } } } else { if (arg.is_real_type ()) { Matrix tmp = arg.matrix_value (); if (! error_state) { HESS result (tmp); if (nargout <= 1) retval(0) = result.hess_matrix (); else { retval(1) = result.hess_matrix (); retval(0) = result.unitary_hess_matrix (); } } } else if (arg.is_complex_type ()) { ComplexMatrix ctmp = arg.complex_matrix_value (); if (! error_state) { ComplexHESS result (ctmp); if (nargout <= 1) retval(0) = result.hess_matrix (); else { retval(1) = result.hess_matrix (); retval(0) = result.unitary_hess_matrix (); } } } else { gripe_wrong_type_arg ("hess", arg); } } return retval; } /* %!test %! a = [1, 2, 3; 5, 4, 6; 8, 7, 9]; %! [p, h] = hess (a); %! assert (p * h * p', a, sqrt (eps)); %!test %! a = single ([1, 2, 3; 5, 4, 6; 8, 7, 9]); %! [p, h] = hess (a); %! assert (p * h * p', a, sqrt (eps ("single"))); %!error hess () %!error hess ([1, 2; 3, 4], 2) %!error <argument must be a square matrix> hess ([1, 2; 3, 4; 5, 6]) */