Mercurial > hg > octave-lyh
view scripts/statistics/distributions/gampdf.m @ 8164:0d37c99fc06f
__go_draw_axes__.m: eliminate have_newer_gnuplot variable
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Mon, 29 Sep 2008 20:25:42 -0400 |
parents | a1dbe9d80eee |
children | 95c3e38098bf |
line wrap: on
line source
## Copyright (C) 1995, 1996, 1997, 2005, 2006, 2007 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} gampdf (@var{x}, @var{a}, @var{b}) ## For each element of @var{x}, return the probability density function ## (PDF) at @var{x} of the Gamma distribution with parameters @var{a} ## and @var{b}. ## @seealso{gamma, gammaln, gammainc, gamcdf, gaminv, gamrnd} ## @end deftypefn ## Author: TT <Teresa.Twaroch@ci.tuwien.ac.at> ## Description: PDF of the Gamma distribution function pdf = gampdf (x, a, b) if (nargin != 3) print_usage (); endif if (!isscalar (a) || !isscalar(b)) [retval, x, a, b] = common_size (x, a, b); if (retval > 0) error ("gampdf: x, a and b must be of common size or scalars"); endif endif sz = size(x); pdf = zeros (sz); k = find (!(a > 0) | !(b > 0) | isnan (x)); if (any (k)) pdf (k) = NaN; endif k = find ((x > 0) & (a > 0) & (a <= 1) & (b > 0)); if (any (k)) if (isscalar(a) && isscalar(b)) pdf(k) = (x(k) .^ (a - 1)) ... .* exp(- x(k) ./ b) ./ gamma (a) ./ (b .^ a); else pdf(k) = (x(k) .^ (a(k) - 1)) ... .* exp(- x(k) ./ b(k)) ./ gamma (a(k)) ./ (b(k) .^ a(k)); endif endif k = find ((x > 0) & (a > 1) & (b > 0)); if (any (k)) if (isscalar(a) && isscalar(b)) pdf(k) = exp (- a .* log (b) + (a-1) .* log (x(k)) - x(k) ./ b - gammaln (a)); else pdf(k) = exp (- a(k) .* log (b(k)) + (a(k)-1) .* log (x(k)) - x(k) ./ b(k) - gammaln (a(k))); endif endif endfunction