Mercurial > hg > octave-lyh
view scripts/statistics/distributions/geoinv.m @ 8164:0d37c99fc06f
__go_draw_axes__.m: eliminate have_newer_gnuplot variable
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Mon, 29 Sep 2008 20:25:42 -0400 |
parents | a1dbe9d80eee |
children | 1740012184f9 |
line wrap: on
line source
## Copyright (C) 1995, 1996, 1997, 2005, 2006, 2007 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} geoinv (@var{x}, @var{p}) ## For each element of @var{x}, compute the quantile at @var{x} of the ## geometric distribution with parameter @var{p}. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Quantile function of the geometric distribution function inv = geoinv (x, p) if (nargin != 2) print_usage (); endif if (!isscalar (x) && !isscalar (p)) [retval, x, p] = common_size (x, p); if (retval > 0) error ("geoinv: x and p must be of common size or scalar"); endif endif inv = zeros (size (x)); k = find (!(x >= 0) | !(x <= 1) | !(p >= 0) | !(p <= 1)); if (any (k)) inv(k) = NaN; endif k = find ((x == 1) & (p >= 0) & (p <= 1)); if (any (k)) inv(k) = Inf; endif k = find ((x > 0) & (x < 1) & (p > 0) & (p <= 1)); if (any (k)) if (isscalar (x)) inv(k) = max (ceil (log (1 - x) ./ log (1 - p(k))) - 1, 0); elseif (isscalar (p)) inv(k) = max (ceil (log (1 - x(k)) / log (1 - p)) - 1, 0); else inv(k) = max (ceil (log (1 - x(k)) ./ log (1 - p(k))) - 1, 0); endif endif endfunction