Mercurial > hg > octave-lyh
view src/DLD-FUNCTIONS/find.cc @ 6485:0f233b5b96a1
[project @ 2007-04-04 14:35:11 by jwe]
author | jwe |
---|---|
date | Wed, 04 Apr 2007 14:35:11 +0000 |
parents | 5b43c2332b69 |
children | 03c89ade4070 |
line wrap: on
line source
/* Copyright (C) 1996, 1997 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "quit.h" #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" // Find at most N_TO_FIND nonzero elements in NDA. Search forward if // DIRECTION is 1, backward if it is -1. NARGOUT is the number of // output arguments. If N_TO_FIND is -1, find all nonzero elements. template <typename T> octave_value_list find_nonzero_elem_idx (const T& nda, int nargout, octave_idx_type n_to_find, int direction) { octave_value_list retval ((nargout == 0 ? 1 : nargout), Matrix ()); octave_idx_type count = 0; octave_idx_type nel = nda.nelem (); // Set the starting element to the correct value based on the // direction to search. octave_idx_type k = 0; if (direction == -1) k = nel - 1; // Search in the default range. octave_idx_type start_el = -1; octave_idx_type end_el = -1; // Search for the number of elements to return. while (k < nel && k > -1 && n_to_find != count) { OCTAVE_QUIT; if (nda(k) != 0.0) { end_el = k; if (start_el == -1) start_el = k; count++; } k = k + direction; } // Reverse the range if we're looking backward. if (direction == -1) { octave_idx_type tmp_el = start_el; start_el = end_el; end_el = tmp_el; } // Fix an off by one error. end_el++; // If the original argument was a row vector, force a row vector of // the overall indices to be returned. But see below for scalar // case... octave_idx_type result_nr = count; octave_idx_type result_nc = 1; bool scalar_arg = false; if (nda.ndims () == 2 && nda.rows () == 1) { result_nr = 1; result_nc = count; scalar_arg = (nda.columns () == 1); } Matrix idx (result_nr, result_nc); Matrix i_idx (result_nr, result_nc); Matrix j_idx (result_nr, result_nc); T val (dim_vector (result_nr, result_nc)); if (count > 0) { count = 0; octave_idx_type nr = nda.rows (); octave_idx_type i = 0; // Search for elements to return. Only search the region where // there are elements to be found using the count that we want // to find. // For compatibility, all N-d arrays are handled as if they are // 2-d, with the number of columns equal to "prod (dims (2:end))". for (k = start_el; k < end_el; k++) { OCTAVE_QUIT; if (nda(k) != 0.0) { idx(count) = k + 1; octave_idx_type xr = k % nr; i_idx(count) = xr + 1; j_idx(count) = (k - xr) / nr + 1; val(count) = nda(k); count++; } i++; } } else if (scalar_arg) { idx.resize (0, 0); i_idx.resize (0, 0); j_idx.resize (0, 0); val.resize (dim_vector (0, 0)); } switch (nargout) { default: case 3: retval(2) = val; // Fall through! case 2: retval(1) = j_idx; retval(0) = i_idx; break; case 1: case 0: retval(0) = idx; break; } return retval; } template octave_value_list find_nonzero_elem_idx (const NDArray&, int, octave_idx_type, int); template octave_value_list find_nonzero_elem_idx (const ComplexNDArray&, int, octave_idx_type, int); DEFUN_DLD (find, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {} find (@var{x})\n\ @deftypefnx {Loadable Function} {} find (@var{x}, @var{n})\n\ @deftypefnx {Loadable Function} {} find (@var{x}, @var{n}, @var{direction})\n\ Return a vector of indices of nonzero elements of a matrix. To obtain a\n\ single index for each matrix element, Octave pretends that the columns\n\ of a matrix form one long vector (like Fortran arrays are stored). For\n\ example,\n\ \n\ @example\n\ @group\n\ find (eye (2))\n\ @result{} [ 1; 4 ]\n\ @end group\n\ @end example\n\ \n\ If two outputs are requested, @code{find} returns the row and column\n\ indices of nonzero elements of a matrix. For example,\n\ \n\ @example\n\ @group\n\ [i, j] = find (2 * eye (2))\n\ @result{} i = [ 1; 2 ]\n\ @result{} j = [ 1; 2 ]\n\ @end group\n\ @end example\n\ \n\ If three outputs are requested, @code{find} also returns a vector\n\ containing the nonzero values. For example,\n\ \n\ @example\n\ @group\n\ [i, j, v] = find (3 * eye (2))\n\ @result{} i = [ 1; 2 ]\n\ @result{} j = [ 1; 2 ]\n\ @result{} v = [ 3; 3 ]\n\ @end group\n\ @end example\n\ \n\ If two inputs are given, @var{n} indicates the number of elements to\n\ find from the beginning of the matrix or vector.\n\ \n\ If three inputs are given, @var{direction} should be one of \"first\" or\n\ \"last\" indicating that it should start counting found elements from the\n\ first or last element.\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin > 3 || nargin < 1) { print_usage (); return retval; } // Setup the default options. octave_idx_type n_to_find = -1; if (nargin > 1) { n_to_find = args(1).int_value (); if (error_state) { error ("find: expecting second argument to be an integer"); return retval; } } // Direction to do the searching (1 == forward, -1 == reverse). int direction = 1; if (nargin > 2) { direction = 0; std::string s_arg = args(2).string_value (); if (! error_state) { if (s_arg == "first") direction = 1; else if (s_arg == "last") direction = -1; } if (direction == 0) { error ("find: expecting third argument to be \"first\" or \"last\""); return retval; } } octave_value arg = args(0); if (arg.is_real_type ()) { NDArray nda = arg.array_value (); if (! error_state) retval = find_nonzero_elem_idx (nda, nargout, n_to_find, direction); } else if (arg.is_complex_type ()) { ComplexNDArray cnda = arg.complex_array_value (); if (! error_state) retval = find_nonzero_elem_idx (cnda, nargout, n_to_find, direction); } else if (arg.is_string ()) { charNDArray cnda = arg.char_array_value (); if (! error_state) retval = find_nonzero_elem_idx (cnda, nargout, n_to_find, direction); } else { gripe_wrong_type_arg ("find", arg); } return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */