view scripts/sparse/sprandsym.m @ 14237:11949c9795a0

Revamp %!demos in m-files to use Octave coding conventions on spacing, etc. Add clf() to all demos using plot features to get reproducibility. Use 64 as input to all colormaps (jet (64)) to get reproducibility. * bicubic.m, cell2mat.m, celldisp.m, cplxpair.m, interp1.m, interp2.m, interpft.m, interpn.m, profile.m, profshow.m, convhull.m, delaunay.m, griddata.m, inpolygon.m, voronoi.m, autumn.m, bone.m, contrast.m, cool.m, copper.m, flag.m, gmap40.m, gray.m, hot.m, hsv.m, image.m, imshow.m, jet.m, ocean.m, pink.m, prism.m, rainbow.m, spring.m, summer.m, white.m, winter.m, condest.m, onenormest.m, axis.m, clabel.m, colorbar.m, comet.m, comet3.m, compass.m, contour.m, contour3.m, contourf.m, cylinder.m, daspect.m, ellipsoid.m, errorbar.m, ezcontour.m, ezcontourf.m, ezmesh.m, ezmeshc.m, ezplot.m, ezplot3.m, ezpolar.m, ezsurf.m, ezsurfc.m, feather.m, fill.m, fplot.m, grid.m, hold.m, isosurface.m, legend.m, loglog.m, loglogerr.m, pareto.m, patch.m, pbaspect.m, pcolor.m, pie.m, pie3.m, plot3.m, plotmatrix.m, plotyy.m, polar.m, quiver.m, quiver3.m, rectangle.m, refreshdata.m, ribbon.m, rose.m, scatter.m, scatter3.m, semilogx.m, semilogxerr.m, semilogy.m, semilogyerr.m, shading.m, slice.m, sombrero.m, stairs.m, stem.m, stem3.m, subplot.m, surf.m, surfc.m, surfl.m, surfnorm.m, text.m, title.m, trimesh.m, triplot.m, trisurf.m, uigetdir.m, uigetfile.m, uimenu.m, uiputfile.m, waitbar.m, xlim.m, ylim.m, zlim.m, mkpp.m, pchip.m, polyaffine.m, spline.m, bicgstab.m, cgs.m, gplot.m, pcg.m, pcr.m, treeplot.m, strtok.m, demo.m, example.m, rundemos.m, speed.m, test.m, calendar.m, datestr.m, datetick.m, weekday.m: Revamp %!demos to use Octave coding conventions on spacing, etc.
author Rik <octave@nomad.inbox5.com>
date Fri, 20 Jan 2012 12:59:53 -0800
parents 72c96de7a403
children f3d52523cde1
line wrap: on
line source

## Copyright (C) 2004-2012 David Bateman and Andy Adler
## Copyright (C) 2012 Jordi Gutiérrez Hermoso
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} sprandsym (@var{n}, @var{d})
## @deftypefnx {Function File} {} sprandsym (@var{s})
## Generate a symmetric random sparse matrix.  The size of the matrix will be
## @var{n} by @var{n}, with a density of values given by @var{d}.
## @var{d} should be between 0 and 1. Values will be normally
## distributed with mean of zero and variance 1.
##
## If called with a single matrix argument, a random sparse matrix is
## generated wherever the matrix @var{S} is non-zero in its lower
## triangular part.
## @seealso{sprand, sprandn}
## @end deftypefn

function S = sprandsym (n, d)

  if (nargin != 1 && nargin != 2)
    print_usage ();
  endif

  if (nargin == 1)
    [i, j] = find (tril (n));
    [nr, nc] = size (n);
    S = sparse (i, j, randn (size (i)), nr, nc);
    S = S + tril (S, -1)';
    return;
  endif

  if (!(isscalar (n) && n == fix (n) && n > 0))
    error ("sprandsym: N must be an integer greater than 0");
  endif

  if (d < 0 || d > 1)
    error ("sprandsym: density D must be between 0 and 1");
  endif

  ## Actual number of nonzero entries
  k = round (n^2*d);

  ## Diagonal nonzero entries, same parity as k
  r = pick_rand_diag (n, k);

  ## Off diagonal nonzero entries
  m = (k - r)/2;

  ondiag = randperm (n, r);
  offdiag = randperm (n*(n - 1)/2, m);

  ## Row index
  i = lookup (cumsum (0:n), offdiag - 1) + 1;

  ## Column index
  j = offdiag - (i - 1).*(i - 2)/2;

  diagvals = randn (1, r);
  offdiagvals = randn (1, m);

  S = sparse ([ondiag, i, j], [ondiag, j, i],
              [diagvals, offdiagvals, offdiagvals], n, n);

endfunction

function r = pick_rand_diag (n, k)
  ## Pick a random number R of entries for the diagonal of a sparse NxN
  ## symmetric square matrix with exactly K nonzero entries, ensuring
  ## that this R is chosen uniformly over all such matrices.
  ##
  ## Let D be the number of diagonal entries and M the number of
  ## off-diagonal entries. Then K = D + 2*M. Let A = N*(N-1)/2 be the
  ## number of available entries in the upper triangle of the matrix.
  ## Then, by a simple counting argument, there is a total of
  ##
  ##     T = nchoosek (N, D) * nchoosek (A, M)
  ##
  ## symmetric NxN matrices with a total of K nonzero entries and D on
  ## the diagonal. Letting D range from mod (K,2) through min (N,K), and
  ## dividing by this sum, we obtain the probability P for D to be each
  ## of those values.
  ##
  ## However, we cannot use this form for computation, as the binomial
  ## coefficients become unmanageably large. Instead, we use the
  ## successive quotients Q(i) = T(i+1)/T(i), which we easily compute to
  ## be
  ##
  ##               (N - D)*(N - D - 1)*M
  ##     Q =  -------------------------------
  ##            (D + 2)*(D + 1)*(A - M + 1)
  ##
  ## Then, after prepending 1, the cumprod of these quotients is
  ##
  ##      C = [ T(1)/T(1), T(2)/T(1), T(3)/T(1), ..., T(N)/T(1) ]
  ##
  ## Their sum is thus S = sum (T)/T(1), and then C(i)/S is the desired
  ## probability P(i) for i=1:N. The cumsum will finally give the
  ## distribution function for computing the random number of entries on
  ## the diagonal R.
  ##
  ## Thanks to Zsbán Ambrus <ambrus@math.bme.hu> for most of the ideas
  ## of the implementation here, especially how to do the computation
  ## numerically to avoid overflow.

  ## Degenerate case
  if k == 1
    r = 1;
    return
  endif

  ## Compute the stuff described above
  a = n*(n - 1)/2;
  d = [mod(k,2):2:min(n,k)-2];
  m = (k - d)/2;
  q = (n - d).*(n - d - 1).*m ./ (d + 2)./(d + 1)./(a - m + 1);

  ## Slight modification from discussion above: pivot around the max in
  ## order to avoid overflow (underflow is fine, just means effectively
  ## zero probabilities).
  [~, midx] = max (cumsum (log (q))) ;
  midx++;
  lc = fliplr (cumprod (1./q(midx-1:-1:1)));
  rc = cumprod (q(midx:end));

  ## Now c = t(i)/t(midx), so c > 1 == [].
  c = [lc, 1, rc];
  s = sum (c);
  p = c/s;

  ## Add final d
  d(end+1) = d(end) + 2;

  ## Pick a random r using this distribution
  r = d(sum (cumsum (p) < rand) + 1);

endfunction

%!test
%! s = sprandsym (10, 0.1);
%! assert (issparse (s));
%! assert (issymmetric (s));
%! assert (size (s), [10, 10]);
%! assert (nnz (s) / numel (s), 0.1, .01);

%% Test 1-input calling form
%!test
%! s = sprandsym (sparse ([1 2 3], [3 2 3], [2 2 2]));
%! [i, j] = find (s);
%! assert (sort (i), [2 3]');
%! assert (sort (j), [2 3]');

%% Test input validation
%!error sprandsym ()
%!error sprandsym (1, 2, 3)
%!error sprandsym (ones(3), 0.5)
%!error sprandsym (3.5, 0.5)
%!error sprandsym (0, 0.5)
%!error sprandsym (3, -1)
%!error sprandsym (3, 2)