Mercurial > hg > octave-lyh
view scripts/sparse/svds.m @ 14237:11949c9795a0
Revamp %!demos in m-files to use Octave coding conventions on spacing, etc.
Add clf() to all demos using plot features to get reproducibility.
Use 64 as input to all colormaps (jet (64)) to get reproducibility.
* bicubic.m, cell2mat.m, celldisp.m, cplxpair.m, interp1.m, interp2.m,
interpft.m, interpn.m, profile.m, profshow.m, convhull.m, delaunay.m,
griddata.m, inpolygon.m, voronoi.m, autumn.m, bone.m, contrast.m, cool.m,
copper.m, flag.m, gmap40.m, gray.m, hot.m, hsv.m, image.m, imshow.m, jet.m,
ocean.m, pink.m, prism.m, rainbow.m, spring.m, summer.m, white.m, winter.m,
condest.m, onenormest.m, axis.m, clabel.m, colorbar.m, comet.m, comet3.m,
compass.m, contour.m, contour3.m, contourf.m, cylinder.m, daspect.m,
ellipsoid.m, errorbar.m, ezcontour.m, ezcontourf.m, ezmesh.m, ezmeshc.m,
ezplot.m, ezplot3.m, ezpolar.m, ezsurf.m, ezsurfc.m, feather.m, fill.m,
fplot.m, grid.m, hold.m, isosurface.m, legend.m, loglog.m, loglogerr.m,
pareto.m, patch.m, pbaspect.m, pcolor.m, pie.m, pie3.m, plot3.m, plotmatrix.m,
plotyy.m, polar.m, quiver.m, quiver3.m, rectangle.m, refreshdata.m, ribbon.m,
rose.m, scatter.m, scatter3.m, semilogx.m, semilogxerr.m, semilogy.m,
semilogyerr.m, shading.m, slice.m, sombrero.m, stairs.m, stem.m, stem3.m,
subplot.m, surf.m, surfc.m, surfl.m, surfnorm.m, text.m, title.m, trimesh.m,
triplot.m, trisurf.m, uigetdir.m, uigetfile.m, uimenu.m, uiputfile.m,
waitbar.m, xlim.m, ylim.m, zlim.m, mkpp.m, pchip.m, polyaffine.m, spline.m,
bicgstab.m, cgs.m, gplot.m, pcg.m, pcr.m, treeplot.m, strtok.m, demo.m,
example.m, rundemos.m, speed.m, test.m, calendar.m, datestr.m, datetick.m,
weekday.m: Revamp %!demos to use Octave coding conventions on spacing, etc.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Fri, 20 Jan 2012 12:59:53 -0800 |
parents | f8d99761244c |
children | 4d917a6a858b |
line wrap: on
line source
## Copyright (C) 2006-2012 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{s} =} svds (@var{A}) ## @deftypefnx {Function File} {@var{s} =} svds (@var{A}, @var{k}) ## @deftypefnx {Function File} {@var{s} =} svds (@var{A}, @var{k}, @var{sigma}) ## @deftypefnx {Function File} {@var{s} =} svds (@var{A}, @var{k}, @var{sigma}, @var{opts}) ## @deftypefnx {Function File} {[@var{u}, @var{s}, @var{v}] =} svds (@dots{}) ## @deftypefnx {Function File} {[@var{u}, @var{s}, @var{v}, @var{flag}] =} svds (@dots{}) ## ## Find a few singular values of the matrix @var{A}. The singular values ## are calculated using ## ## @example ## @group ## [@var{m}, @var{n}] = size(@var{A}) ## @var{s} = eigs([sparse(@var{m}, @var{m}), @var{A}; ## @var{A}', sparse(@var{n}, @var{n})]) ## @end group ## @end example ## ## The eigenvalues returned by @code{eigs} correspond to the singular values ## of @var{A}. The number of singular values to calculate is given by @var{k} ## and defaults to 6. ## ## The argument @var{sigma} specifies which singular values to find. When ## @var{sigma} is the string 'L', the default, the largest singular values of ## @var{A} are found. Otherwise, @var{sigma} must be a real scalar and the ## singular values closest to @var{sigma} are found. As a corollary, ## @code{@var{sigma} = 0} finds the smallest singular values. Note that for ## relatively small values of @var{sigma}, there is a chance that the requested ## number of singular values will not be found. In that case @var{sigma} ## should be increased. ## ## @var{opts} is a structure defining options that @code{svds} will pass ## to @code{eigs}. The possible fields of this structure are documented in ## @code{eigs}. By default, @code{svds} sets the following three fields: ## ## @table @code ## @item tol ## The required convergence tolerance for the singular values. The default ## value is 1e-10. @code{eigs} is passed @code{@var{tol} / sqrt(2)}. ## ## @item maxit ## The maximum number of iterations. The default is 300. ## ## @item disp ## The level of diagnostic printout (0|1|2). If @code{disp} is 0 then ## diagnostics are disabled. The default value is 0. ## @end table ## ## If more than one output is requested then @code{svds} will return an ## approximation of the singular value decomposition of @var{A} ## ## @example ## @var{A}_approx = @var{u}*@var{s}*@var{v}' ## @end example ## ## @noindent ## where @var{A}_approx is a matrix of size @var{A} but only rank @var{k}. ## ## @var{flag} returns 0 if the algorithm has succesfully converged, and 1 ## otherwise. The test for convergence is ## ## @example ## @group ## norm (@var{A}*@var{v} - @var{u}*@var{s}, 1) <= @var{tol} * norm (@var{A}, 1) ## @end group ## @end example ## ## @code{svds} is best for finding only a few singular values from a large ## sparse matrix. Otherwise, @code{svd (full(@var{A}))} will likely be more ## efficient. ## @end deftypefn ## @seealso{svd, eigs} function [u, s, v, flag] = svds (A, k, sigma, opts) persistent root2 = sqrt (2); if (nargin < 1 || nargin > 4) print_usage (); endif if (ndims(A) > 2) error ("svds: A must be a 2D matrix"); endif if (nargin < 4) opts.tol = 1e-10 / root2; opts.disp = 0; opts.maxit = 300; else if (!isstruct (opts)) error ("svds: OPTS must be a structure"); endif if (!isfield (opts, "tol")) opts.tol = 1e-10 / root2; else opts.tol = opts.tol / root2; endif if (isfield (opts, "v0")) if (!isvector (opts.v0) || (length (opts.v0) != sum (size (A)))) error ("svds: OPTS.v0 must be a vector with rows(A)+columns(A) entries"); endif endif endif if (nargin < 3 || strcmp (sigma, "L")) if (isreal (A)) sigma = "LA"; else sigma = "LR"; endif elseif (isscalar (sigma) && isnumeric (sigma) && isreal (sigma)) if (sigma < 0) error ("svds: SIGMA must be a positive real value"); endif else error ("svds: SIGMA must be a positive real value or the string 'L'"); endif [m, n] = size (A); max_a = max (abs (A(:))); if (max_a == 0) s = zeros (k, 1); # special case of zero matrix else if (nargin < 2) k = min ([6, m, n]); else k = min ([k, m, n]); endif ## Scale everything by the 1-norm to make things more stable. b = A / max_a; b_opts = opts; ## Call to eigs is always a symmetric matrix by construction b_opts.issym = true; b_opts.tol = opts.tol / max_a; b_sigma = sigma; if (!ischar (b_sigma)) b_sigma = b_sigma / max_a; endif if (b_sigma == 0) ## Find the smallest eigenvalues ## The eigenvalues returns by eigs for sigma=0 are symmetric about 0. ## As we are only interested in the positive eigenvalues, we have to ## double k and then throw out the k negative eigenvalues. ## Separately, if sigma is non-zero, but smaller than the smallest ## singular value, ARPACK may not return k eigenvalues. However, as ## computation scales with k we'd like to avoid doubling k for all ## scalar values of sigma. b_k = 2 * k; else b_k = k; # Normal case, find just the k largest eigenvalues endif if (nargout > 1) [V, s, flag] = eigs ([sparse(m,m), b; b', sparse(n,n)], b_k, b_sigma, b_opts); s = diag (s); else s = eigs ([sparse(m,m), b; b', sparse(n,n)], b_k, b_sigma, b_opts); endif if (ischar (sigma)) norma = max (s); else norma = normest (A); endif ## We wish to exclude all eigenvalues that are less than zero as these ## are artifacts of the way the matrix passed to eigs is formed. There ## is also the possibility that the value of sigma chosen is exactly ## a singular value, and in that case we're dead!! So have to rely on ## the warning from eigs. We exclude the singular values which are ## less than or equal to zero to within some tolerance scaled by the ## norm since if we don't we might end up with too many singular ## values. tol = norma * opts.tol; ind = find(s > tol); if (length (ind) < k) ## Too few eigenvalues returned. Add in any zero eigenvalues of B, ## including the nominally negative ones. zind = find (abs (s) <= tol); p = min (length (zind), k - length (ind)); ind = [ind; zind(1:p)]; elseif (length (ind) > k) ## Too many eigenvalues returned. Select according to criterium. if (b_sigma == 0) ind = ind(end+1-k:end); # smallest eigenvalues else ind = ind(1:k); # largest eigenvalues endif endif s = s(ind); if (length (s) < k) warning ("returning fewer singular values than requested"); if (!ischar (sigma)) warning ("try increasing the value of sigma"); endif endif s = s * max_a; endif if (nargout < 2) u = s; else if (max_a == 0) u = eye (m, k); s = diag (s); v = eye (n, k); else u = root2 * V(1:m,ind); s = diag (s); v = root2 * V(m+1:end,ind); endif if (nargout > 3) flag = norm (A*v - u*s, 1) > root2 * opts.tol * norm (A, 1); endif endif endfunction %!shared n, k, A, u, s, v, opts, rand_state, randn_state %! n = 100; %! k = 7; %! A = sparse ([3:n,1:n,1:(n-2)],[1:(n-2),1:n,3:n],[ones(1,n-2),0.4*n*ones(1,n),ones(1,n-2)]); %! [u,s,v] = svd (full (A)); %! s = diag (s); %! [~, idx] = sort (abs(s)); %! s = s(idx); %! u = u(:, idx); %! v = v(:, idx); %! randn_state = randn ("state"); %! rand_state = rand ("state"); %! randn ("state", 42); % Initialize to make normest function reproducible %! rand ("state", 42); %! opts.v0 = rand (2*n,1); % Initialize eigs ARPACK starting vector %! % to guarantee reproducible results %! %!testif HAVE_ARPACK %! [u2,s2,v2,flag] = svds (A,k); %! s2 = diag (s2); %! assert (flag, !1); %! assert (s2, s(end:-1:end-k+1), 1e-10); %! %!testif HAVE_ARPACK, HAVE_UMFPACK %! [u2,s2,v2,flag] = svds (A,k,0,opts); %! s2 = diag (s2); %! assert (flag, !1); %! assert (s2, s(k:-1:1), 1e-10); %! %!testif HAVE_ARPACK, HAVE_UMFPACK %! idx = floor(n/2); %! % Don't put sigma right on a singular value or there are convergence issues %! sigma = 0.99*s(idx) + 0.01*s(idx+1); %! [u2,s2,v2,flag] = svds (A,k,sigma,opts); %! s2 = diag (s2); %! assert (flag, !1); %! assert (s2, s((idx+floor(k/2)):-1:(idx-floor(k/2))), 1e-10); %! %!testif HAVE_ARPACK %! [u2,s2,v2,flag] = svds (zeros (10), k); %! assert (u2, eye (10, k)); %! assert (s2, zeros (k)); %! assert (v2, eye (10, 7)); %! %!testif HAVE_ARPACK %! s = svds (speye (10)); %! assert (s, ones (6, 1), 2*eps); %!test %! ## Restore random number generator seeds at end of tests %! rand ("state", rand_state); %! randn ("state", randn_state);