Mercurial > hg > octave-lyh
view scripts/optimization/glpk.m @ 17298:17be601bc783
doc: Periodic spellchecking of documentation.
* doc/interpreter/doccheck/aspell-octave.en.pws: Add new words to
Octave-specific dictionary.
* doc/interpreter/tips.txi: Use @nospell macro around qcode definition.
* libinterp/corefcn/utils.cc: Use @nospell macro around meaningless
example directory names.
scripts/optimization/fsolve.m: Use @nospell macro around proper name Broyden.
scripts/optimization/glpk.m: Use @nospell macro around false word "pseudocost".
author | Rik <rik@octave.org> |
---|---|
date | Tue, 20 Aug 2013 09:42:35 -0700 |
parents | bc924baa2c4e |
children | 1c89599167a6 |
line wrap: on
line source
## Copyright (C) 2005-2012 Nicolo' Giorgetti ## Copyright (C) 2013 Sébastien Villemot <sebastien@debian.org> ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{xopt}, @var{fmin}, @var{errnum}, @var{extra}] =} glpk (@var{c}, @var{A}, @var{b}, @var{lb}, @var{ub}, @var{ctype}, @var{vartype}, @var{sense}, @var{param}) ## Solve a linear program using the GNU @sc{glpk} library. Given three ## arguments, @code{glpk} solves the following standard LP: ## @tex ## $$ ## \min_x C^T x ## $$ ## @end tex ## @ifnottex ## ## @example ## min C'*x ## @end example ## ## @end ifnottex ## subject to ## @tex ## $$ ## Ax = b \qquad x \geq 0 ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## A*x = b ## x >= 0 ## @end group ## @end example ## ## @end ifnottex ## but may also solve problems of the form ## @tex ## $$ ## [ \min_x | \max_x ] C^T x ## $$ ## @end tex ## @ifnottex ## ## @example ## [ min | max ] C'*x ## @end example ## ## @end ifnottex ## subject to ## @tex ## $$ ## Ax [ = | \leq | \geq ] b \qquad LB \leq x \leq UB ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## A*x [ "=" | "<=" | ">=" ] b ## x >= LB ## x <= UB ## @end group ## @end example ## ## @end ifnottex ## ## Input arguments: ## ## @table @var ## @item c ## A column array containing the objective function coefficients. ## ## @item A ## A matrix containing the constraints coefficients. ## ## @item b ## A column array containing the right-hand side value for each constraint ## in the constraint matrix. ## ## @item lb ## An array containing the lower bound on each of the variables. If ## @var{lb} is not supplied, the default lower bound for the variables is ## zero. ## ## @item ub ## An array containing the upper bound on each of the variables. If ## @var{ub} is not supplied, the default upper bound is assumed to be ## infinite. ## ## @item ctype ## An array of characters containing the sense of each constraint in the ## constraint matrix. Each element of the array may be one of the ## following values ## ## @table @asis ## @item @qcode{"F"} ## A free (unbounded) constraint (the constraint is ignored). ## ## @item @qcode{"U"} ## An inequality constraint with an upper bound (@code{A(i,:)*x <= b(i)}). ## ## @item @qcode{"S"} ## An equality constraint (@code{A(i,:)*x = b(i)}). ## ## @item @qcode{"L"} ## An inequality with a lower bound (@code{A(i,:)*x >= b(i)}). ## ## @item @qcode{"D"} ## An inequality constraint with both upper and lower bounds ## (@code{A(i,:)*x >= -b(i)} @emph{and} (@code{A(i,:)*x <= b(i)}). ## @end table ## ## @item vartype ## A column array containing the types of the variables. ## ## @table @asis ## @item @qcode{"C"} ## A continuous variable. ## ## @item @qcode{"I"} ## An integer variable. ## @end table ## ## @item sense ## If @var{sense} is 1, the problem is a minimization. If @var{sense} is ## -1, the problem is a maximization. The default value is 1. ## ## @item param ## A structure containing the following parameters used to define the ## behavior of solver. Missing elements in the structure take on default ## values, so you only need to set the elements that you wish to change ## from the default. ## ## Integer parameters: ## ## @table @code ## @item msglev (default: 1) ## Level of messages output by solver routines: ## ## @table @asis ## @item 0 (@w{@code{GLP_MSG_OFF}}) ## No output. ## ## @item 1 (@w{@code{GLP_MSG_ERR}}) ## Error and warning messages only. ## ## @item 2 (@w{@code{GLP_MSG_ON}}) ## Normal output. ## ## @item 3 (@w{@code{GLP_MSG_ALL}}) ## Full output (includes informational messages). ## @end table ## ## @item scale (default: 16) ## Scaling option. The values can be combined with the bitwise OR operator and ## may be the following: ## ## @table @asis ## @item 1 (@w{@code{GLP_SF_GM}}) ## Geometric mean scaling. ## ## @item 16 (@w{@code{GLP_SF_EQ}}) ## Equilibration scaling. ## ## @item 32 (@w{@code{GLP_SF_2N}}) ## Round scale factors to power of two. ## ## @item 64 (@w{@code{GLP_SF_SKIP}}) ## Skip if problem is well scaled. ## @end table ## ## Alternatively, a value of 128 (@w{@env{GLP_SF_AUTO}}) may be also ## specified, in which case the routine chooses the scaling options ## automatically. ## ## @item dual (default: 1) ## Simplex method option: ## ## @table @asis ## @item 1 (@w{@code{GLP_PRIMAL}}) ## Use two-phase primal simplex. ## ## @item 2 (@w{@code{GLP_DUALP}}) ## Use two-phase dual simplex, and if it fails, switch to the primal simplex. ## ## @item 3 (@w{@code{GLP_DUAL}}) ## Use two-phase dual simplex. ## @end table ## ## @item price (default: 34) ## Pricing option (for both primal and dual simplex): ## ## @table @asis ## @item 17 (@w{@code{GLP_PT_STD}}) ## Textbook pricing. ## ## @item 34 (@w{@code{GLP_PT_PSE}}) ## Steepest edge pricing. ## @end table ## ## @item itlim (default: intmax) ## Simplex iterations limit. It is decreased by one each time when one simplex ## iteration has been performed, and reaching zero value signals the solver to ## stop the search. ## ## @item outfrq (default: 200) ## Output frequency, in iterations. This parameter specifies how ## frequently the solver sends information about the solution to the ## standard output. ## ## @item branch (default: 4) ## Branching technique option (for MIP only): ## ## @table @asis ## @item 1 (@w{@code{GLP_BR_FFV}}) ## First fractional variable. ## ## @item 2 (@w{@code{GLP_BR_LFV}}) ## Last fractional variable. ## ## @item 3 (@w{@code{GLP_BR_MFV}}) ## Most fractional variable. ## ## @item 4 (@w{@code{GLP_BR_DTH}}) ## Heuristic by Driebeck and Tomlin. ## ## @item 5 (@w{@code{GLP_BR_PCH}}) ## Hybrid @nospell{pseudocost} heuristic. ## @end table ## ## @item btrack (default: 4) ## Backtracking technique option (for MIP only): ## ## @table @asis ## @item 1 (@w{@code{GLP_BT_DFS}}) ## Depth first search. ## ## @item 2 (@w{@code{GLP_BT_BFS}}) ## Breadth first search. ## ## @item 3 (@w{@code{GLP_BT_BLB}}) ## Best local bound. ## ## @item 4 (@w{@code{GLP_BT_BPH}}) ## Best projection heuristic. ## @end table ## ## @item presol (default: 1) ## If this flag is set, the simplex solver uses the built-in LP presolver. ## Otherwise the LP presolver is not used. ## ## @item lpsolver (default: 1) ## Select which solver to use. If the problem is a MIP problem this flag ## will be ignored. ## ## @table @asis ## @item 1 ## Revised simplex method. ## ## @item 2 ## Interior point method. ## @end table ## ## @item rtest (default: 34) ## Ratio test technique: ## ## @table @asis ## @item 17 (@w{@code{GLP_RT_STD}}) ## Standard ("textbook"). ## ## @item 34 (@w{@code{GLP_RT_HAR}}) ## Harris' two-pass ratio test. ## @end table ## ## @item tmlim (default: intmax) ## Searching time limit, in milliseconds. ## ## @item outdly (default: 0) ## Output delay, in seconds. This parameter specifies how long the solver ## should delay sending information about the solution to the standard ## output. ## ## @item save (default: 0) ## If this parameter is nonzero, save a copy of the problem in ## CPLEX LP format to the file @file{"outpb.lp"}. There is currently no ## way to change the name of the output file. ## @end table ## ## Real parameters: ## ## @table @code ## @item tolbnd (default: 1e-7) ## Relative tolerance used to check if the current basic solution is primal ## feasible. It is not recommended that you change this parameter unless you ## have a detailed understanding of its purpose. ## ## @item toldj (default: 1e-7) ## Absolute tolerance used to check if the current basic solution is dual ## feasible. It is not recommended that you change this parameter unless you ## have a detailed understanding of its purpose. ## ## @item tolpiv (default: 1e-10) ## Relative tolerance used to choose eligible pivotal elements of the ## simplex table. It is not recommended that you change this parameter unless ## you have a detailed understanding of its purpose. ## ## @item objll (default: -DBL_MAX) ## Lower limit of the objective function. If the objective ## function reaches this limit and continues decreasing, the solver stops ## the search. This parameter is used in the dual simplex method only. ## ## @item objul (default: +DBL_MAX) ## Upper limit of the objective function. If the objective ## function reaches this limit and continues increasing, the solver stops ## the search. This parameter is used in the dual simplex only. ## ## @item tolint (default: 1e-5) ## Relative tolerance used to check if the current basic solution is integer ## feasible. It is not recommended that you change this parameter unless ## you have a detailed understanding of its purpose. ## ## @item tolobj (default: 1e-7) ## Relative tolerance used to check if the value of the objective function ## is not better than in the best known integer feasible solution. It is ## not recommended that you change this parameter unless you have a ## detailed understanding of its purpose. ## @end table ## @end table ## ## Output values: ## ## @table @var ## @item xopt ## The optimizer (the value of the decision variables at the optimum). ## ## @item fopt ## The optimum value of the objective function. ## ## @item errnum ## Error code. ## ## @table @asis ## @item 0 ## No error. ## ## @item 1 (@w{@code{GLP_EBADB}}) ## Invalid basis. ## ## @item 2 (@w{@code{GLP_ESING}}) ## Singular matrix. ## ## @item 3 (@w{@code{GLP_ECOND}}) ## Ill-conditioned matrix. ## ## @item 4 (@w{@code{GLP_EBOUND}}) ## Invalid bounds. ## ## @item 5 (@w{@code{GLP_EFAIL}}) ## Solver failed. ## ## @item 6 (@w{@code{GLP_EOBJLL}}) ## Objective function lower limit reached. ## ## @item 7 (@w{@code{GLP_EOBJUL}}) ## Objective function upper limit reached. ## ## @item 8 (@w{@code{GLP_EITLIM}}) ## Iterations limit exhausted. ## ## @item 9 (@w{@code{GLP_ETMLIM}}) ## Time limit exhausted. ## ## @item 10 (@w{@code{GLP_ENOPFS}}) ## No primal feasible solution. ## ## @item 11 (@w{@code{GLP_ENODFS}}) ## No dual feasible solution. ## ## @item 12 (@w{@code{GLP_EROOT}}) ## Root LP optimum not provided. ## ## @item 13 (@w{@code{GLP_ESTOP}}) ## Search terminated by application. ## ## @item 14 (@w{@code{GLP_EMIPGAP}}) ## Relative MIP gap tolerance reached. ## ## @item 15 (@w{@code{GLP_ENOFEAS}}) ## No primal/dual feasible solution. ## ## @item 16 (@w{@code{GLP_ENOCVG}}) ## No convergence. ## ## @item 17 (@w{@code{GLP_EINSTAB}}) ## Numerical instability. ## ## @item 18 (@w{@code{GLP_EDATA}}) ## Invalid data. ## ## @item 19 (@w{@code{GLP_ERANGE}}) ## Result out of range. ## @end table ## ## @item extra ## A data structure containing the following fields: ## ## @table @code ## @item lambda ## Dual variables. ## ## @item redcosts ## Reduced Costs. ## ## @item time ## Time (in seconds) used for solving LP/MIP problem. ## ## @item status ## Status of the optimization. ## ## @table @asis ## @item 1 (@w{@code{GLP_UNDEF}}) ## Solution status is undefined. ## ## @item 2 (@w{@code{GLP_FEAS}}) ## Solution is feasible. ## ## @item 3 (@w{@code{GLP_INFEAS}}) ## Solution is infeasible. ## ## @item 4 (@w{@code{GLP_NOFEAS}}) ## Problem has no feasible solution. ## ## @item 5 (@w{@code{GLP_OPT}}) ## Solution is optimal. ## ## @item 6 (@w{@code{GLP_UNBND}}) ## Problem has no unbounded solution. ## @end table ## @end table ## @end table ## ## Example: ## ## @example ## @group ## c = [10, 6, 4]'; ## A = [ 1, 1, 1; ## 10, 4, 5; ## 2, 2, 6]; ## b = [100, 600, 300]'; ## lb = [0, 0, 0]'; ## ub = []; ## ctype = "UUU"; ## vartype = "CCC"; ## s = -1; ## ## param.msglev = 1; ## param.itlim = 100; ## ## [xmin, fmin, status, extra] = ... ## glpk (c, A, b, lb, ub, ctype, vartype, s, param); ## @end group ## @end example ## @end deftypefn ## Author: Nicolo' Giorgetti <giorgetti@dii.unisi.it> ## Adapted-by: jwe function [xopt, fmin, errnum, extra] = glpk (c, A, b, lb, ub, ctype, vartype, sense, param) ## If there is no input output the version and syntax if (nargin < 3 || nargin > 9) print_usage (); return; endif if (all (size (c) > 1) || iscomplex (c) || ischar (c)) error ("glpk:C must be a real vector"); return; endif nx = length (c); ## Force column vector. c = c(:); ## 2) Matrix constraint if (isempty (A)) error ("glpk: A cannot be an empty matrix"); return; endif [nc, nxa] = size (A); if (! isreal (A) || nxa != nx) error ("glpk: A must be a real valued %d by %d matrix", nc, nx); return; endif ## 3) RHS if (isempty (b)) error ("glpk: B cannot be an empty vector"); return; endif if (! isreal (b) || length (b) != nc) error ("glpk: B must be a real valued %d by 1 vector", nc); return; endif ## 4) Vector with the lower bound of each variable if (nargin > 3) if (isempty (lb)) lb = zeros (nx, 1); elseif (! isreal (lb) || all (size (lb) > 1) || length (lb) != nx) error ("glpk: LB must be a real valued %d by 1 column vector", nx); return; endif else lb = zeros (nx, 1); endif ## 5) Vector with the upper bound of each variable if (nargin > 4) if (isempty (ub)) ub = Inf (nx, 1); elseif (! isreal (ub) || all (size (ub) > 1) || length (ub) != nx) error ("glpk: UB must be a real valued %d by 1 column vector", nx); return; endif else ub = Inf (nx, 1); endif ## 6) Sense of each constraint if (nargin > 5) if (isempty (ctype)) ctype = repmat ("S", nc, 1); elseif (! ischar (ctype) || all (size (ctype) > 1) || length (ctype) != nc) error ("glpk: CTYPE must be a char valued vector of length %d", nc); return; elseif (! all (ctype == "F" | ctype == "U" | ctype == "S" | ctype == "L" | ctype == "D")) error ("glpk: CTYPE must contain only F, U, S, L, or D"); return; endif else ctype = repmat ("S", nc, 1); endif ## 7) Vector with the type of variables if (nargin > 6) if (isempty (vartype)) vartype = repmat ("C", nx, 1); elseif (! ischar (vartype) || all (size (vartype) > 1) || length (vartype) != nx) error ("glpk: VARTYPE must be a char valued vector of length %d", nx); return; elseif (! all (vartype == "C" | vartype == "I")) error ("glpk: VARTYPE must contain only C or I"); return; endif else ## As default we consider continuous vars vartype = repmat ("C", nx, 1); endif ## 8) Sense of optimization if (nargin > 7) if (isempty (sense)) sense = 1; elseif (ischar (sense) || all (size (sense) > 1) || ! isreal (sense)) error ("glpk: SENSE must be an integer value"); elseif (sense >= 0) sense = 1; else sense = -1; endif else sense = 1; endif ## 9) Parameters vector if (nargin > 8) if (! isstruct (param)) error ("glpk: PARAM must be a structure"); return; endif else param = struct (); endif [xopt, fmin, errnum, extra] = ... __glpk__ (c, A, b, lb, ub, ctype, vartype, sense, param); endfunction