Mercurial > hg > octave-lyh
view scripts/polynomial/spline.m @ 17176:19191d0ef0bf
build: Remove second re-definition of octetc_DATA from Makefile.am.
* Makefile.am: Remove second re-definition of octetc_DATA from Makefile.am.
author | Rik <rik@octave.org> |
---|---|
date | Sun, 04 Aug 2013 07:56:41 -0700 |
parents | c2dbdeaa25df |
children |
line wrap: on
line source
## Copyright (C) 2000-2012 Kai Habel ## Copyright (C) 2006 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{pp} =} spline (@var{x}, @var{y}) ## @deftypefnx {Function File} {@var{yi} =} spline (@var{x}, @var{y}, @var{xi}) ## Return the cubic spline interpolant of points @var{x} and @var{y}. ## ## When called with two arguments, return the piecewise polynomial @var{pp} ## that may be used with @code{ppval} to evaluate the polynomial at specific ## points. When called with a third input argument, @code{spline} evaluates ## the spline at the points @var{xi}. The third calling form @code{spline ## (@var{x}, @var{y}, @var{xi})} is equivalent to @code{ppval (spline ## (@var{x}, @var{y}), @var{xi})}. ## ## The variable @var{x} must be a vector of length @var{n}. @var{y} can be ## either a vector or array. If @var{y} is a vector it must have a length of ## either @var{n} or @code{@var{n} + 2}. If the length of @var{y} is ## @var{n}, then the "not-a-knot" end condition is used. If the length of ## @var{y} is @code{@var{n} + 2}, then the first and last values of the ## vector @var{y} are the values of the first derivative of the cubic spline ## at the endpoints. ## ## If @var{y} is an array, then the size of @var{y} must have the form ## @tex ## $$[s_1, s_2, \cdots, s_k, n]$$ ## @end tex ## @ifnottex ## @code{[@var{s1}, @var{s2}, @dots{}, @var{sk}, @var{n}]} ## @end ifnottex ## or ## @tex ## $$[s_1, s_2, \cdots, s_k, n + 2].$$ ## @end tex ## @ifnottex ## @code{[@var{s1}, @var{s2}, @dots{}, @var{sk}, @var{n} + 2]}. ## @end ifnottex ## The array is reshaped internally to a matrix where the leading ## dimension is given by ## @tex ## $$s_1 s_2 \cdots s_k$$ ## @end tex ## @ifnottex ## @code{@var{s1} * @var{s2} * @dots{} * @var{sk}} ## @end ifnottex ## and each row of this matrix is then treated separately. Note that this ## is exactly opposite to @code{interp1} but is done for @sc{matlab} ## compatibility. ## ## @seealso{pchip, ppval, mkpp, unmkpp} ## @end deftypefn ## This code is based on csape.m from octave-forge, but has been ## modified to use the sparse solver code in octave that itself allows ## special casing of tri-diagonal matrices, modified for NDArrays and ## for the treatment of vectors y 2 elements longer than x as complete ## splines. function ret = spline (x, y, xi) x = x(:); n = length (x); if (n < 2) error ("spline: requires at least 2 points"); endif ## Check the size and shape of y ndy = ndims (y); szy = size (y); if (ndy == 2 && (szy(1) == n || szy(2) == n)) if (szy(2) == n) a = y.'; else a = y; szy = fliplr (szy); endif else a = shiftdim (reshape (y, [prod(szy(1:end-1)), szy(end)]), 1); endif for k = (1:columns (a))(any (isnan (a))) ok = ! isnan (a(:,k)); a(!ok,k) = spline (x(ok), a(ok,k), x(!ok)); endfor complete = false; if (rows (a) == n + 2) complete = true; dfs = a(1,:); dfe = a(end,:); a = a(2:end-1,:); endif if (! issorted (x)) [x, idx] = sort (x); a = a(idx,:); endif b = c = zeros (size (a)); h = diff (x); idx = ones (columns (a), 1); if (complete) if (n == 2) d = (dfs + dfe) / (x(2) - x(1)) ^ 2 + ... 2 * (a(1,:) - a(2,:)) / (x(2) - x(1)) ^ 3; c = (-2 * dfs - dfe) / (x(2) - x(1)) - ... 3 * (a(1,:) - a(2,:)) / (x(2) - x(1)) ^ 2; b = dfs; a = a(1,:); d = d(1:n-1,:); c = c(1:n-1,:); b = b(1:n-1,:); a = a(1:n-1,:); else g(1,:) = (a(2,:) - a(1,:)) / h(1) - dfs; g(2:n-1,:) = (a(3:n,:) - a(2:n-1,:)) ./ h(2:n-1) - ... (a(2:n-1,:) - a(1:n-2,:)) ./ h(1:n-2); g(n,:) = dfe - (a(n,:) - a(n-1,:)) / h(n-1); c = spdiags ([[h/6;0],[h(1)/3;(h(1:n-2)+h(2:n-1))/3;h(n-1)/3],[0;h/6]],... [-1,0,1],n,n) \ (g / 2); b(1:n-1,:) = diff (a) ./ h(1:n-1, idx) ... - h(1:n-1,idx) / 3 .* (c(2:n,:) + 2 * c(1:n-1,:)); d = diff (c) ./ (3 * h(1:n-1, idx)); d = d(1:n-1,:); c = c(1:n-1,:); b = b(1:n-1,:); a = a(1:n-1,:); endif else if (n == 2) b = (a(2,:) - a(1,:)) / (x(2) - x(1)); a = a(1,:); d = []; c = []; b = b(1:n-1,:); a = a(1:n-1,:); elseif (n == 3) n = 2; c = (a(1,:) - a(3,:)) / ((x(3) - x(1)) * (x(2) - x(3))) ... + (a(2,:) - a(1,:)) / ((x(2) - x(1)) * (x(2) - x(3))); b = (a(2,:) - a(1,:)) * (x(3) - x(1)) ... / ((x(2) - x(1)) * (x(3) - x(2))) ... + (a(1,:) - a(3,:)) * (x(2) - x(1)) ... / ((x(3) - x(1)) * (x(3) - x(2))); a = a(1,:); d = []; x = [min(x), max(x)]; c = c(1:n-1,:); b = b(1:n-1,:); a = a(1:n-1,:); else g = zeros (n-2, columns (a)); g(1,:) = 3 / (h(1) + h(2)) ... * (a(3,:) - a(2,:) - h(2) / h(1) * (a(2,:) - a(1,:))); g(n-2,:) = 3 / (h(n-1) + h(n-2)) ... * (h(n-2) / h(n-1) * (a(n,:) - a(n-1,:)) - (a(n-1,:) - a(n-2,:))); if (n > 4) g(2:n - 3,:) = 3 * diff (a(3:n-1,:)) ./ h(3:n-2,idx) ... - 3 * diff (a(2:n-2,:)) ./ h(2:n - 3,idx); dg = 2 * (h(1:n-2) .+ h(2:n-1)); dg(1) = dg(1) - h(1); dg(n-2) = dg(n-2) - h(n-1); ldg = udg = h(2:n-2); udg(1) = udg(1) - h(1); ldg(n - 3) = ldg(n-3) - h(n-1); c(2:n-1,:) = spdiags ([[ldg(:); 0], dg, [0; udg(:)]], [-1, 0, 1], n-2, n-2) \ g; elseif (n == 4) dg = [h(1) + 2 * h(2); 2 * h(2) + h(3)]; ldg = h(2) - h(3); udg = h(2) - h(1); c(2:n-1,:) = spdiags ([[ldg(:);0], dg, [0; udg(:)]], [-1, 0, 1], n-2, n-2) \ g; endif c(1,:) = c(2,:) + h(1) / h(2) * (c(2,:) - c(3,:)); c(n,:) = c(n-1,:) + h(n-1) / h(n-2) * (c(n-1,:) - c(n-2,:)); b = diff (a) ./ h(1:n-1, idx) ... - h(1:n-1, idx) / 3 .* (c(2:n,:) + 2 * c(1:n-1,:)); d = diff (c) ./ (3 * h(1:n-1, idx)); d = d(1:n-1,:);d = d.'(:); c = c(1:n-1,:);c = c.'(:); b = b(1:n-1,:);b = b.'(:); a = a(1:n-1,:);a = a.'(:); endif endif ret = mkpp (x, cat (2, d, c, b, a), szy(1:end-1)); if (nargin == 3) ret = ppval (ret, xi); endif endfunction %!demo %! x = 0:10; y = sin (x); %! xspline = 0:0.1:10; yspline = spline (x,y,xspline); %! title ("spline fit to points from sin (x)"); %! plot (xspline,sin(xspline),"r", xspline,yspline,"g-", x,y,"b+"); %! legend ("original", "interpolation", "interpolation points"); %! %-------------------------------------------------------- %! % confirm that interpolated function matches the original %!shared x,y,abserr %! x = [0:10]; y = sin (x); abserr = 1e-14; %!assert (spline (x,y,x), y, abserr) %!assert (spline (x,y,x'), y', abserr) %!assert (spline (x',y',x'), y', abserr) %!assert (spline (x',y',x), y, abserr) %!assert (isempty (spline (x',y',[]))) %!assert (isempty (spline (x,y,[]))) %!assert (spline (x,[y;y],x), [spline(x,y,x);spline(x,y,x)], abserr) %!assert (spline (x,[y;y],x'), [spline(x,y,x);spline(x,y,x)], abserr) %!assert (spline (x',[y;y],x), [spline(x,y,x);spline(x,y,x)], abserr) %!assert (spline (x',[y;y],x'), [spline(x,y,x);spline(x,y,x)], abserr) %! y = cos (x) + i*sin (x); %!assert (spline (x,y,x), y, abserr) %!assert (real (spline (x,y,x)), real (y), abserr) %!assert (real (spline (x,y,x.')), real (y).', abserr) %!assert (real (spline (x.',y.',x.')), real (y).', abserr) %!assert (real (spline (x.',y,x)), real (y), abserr) %!assert (imag (spline (x,y,x)), imag (y), abserr) %!assert (imag (spline (x,y,x.')), imag (y).', abserr) %!assert (imag (spline (x.',y.',x.')), imag (y).', abserr) %!assert (imag (spline (x.',y,x)), imag (y), abserr) %!test %! xnan = 5; %! y(x==xnan) = NaN; %! ok = ! isnan (y); %! assert (spline (x, y, x(ok)), y(ok), abserr); %!test %! ok = ! isnan (y); %! assert (! isnan (spline (x, y, x(!ok)))); %!test %! x = [1,2]; %! y = [1,4]; %! assert (spline (x,y,x), [1,4], abserr); %!test %! x = [2,1]; %! y = [1,4]; %! assert (spline (x,y,x), [1,4], abserr); %!test %! x = [1,2]; %! y = [1,2,3,4]; %! pp = spline (x,y); %! [x,P] = unmkpp (pp); %! assert (P, [3,-3,1,2], abserr); %!test %! x = [2,1]; %! y = [1,2,3,4]; %! pp = spline (x,y); %! [x,P] = unmkpp (pp); %! assert (P, [7,-9,1,3], abserr); %!test %! x = [0,1,2]; %! y = [0,0,1,0,0]; %! pp = spline (x,y); %! [x,P] = unmkpp (pp); %! assert (P, [-2,3,0,0;2,-3,0,1], abserr); %!test %! x = [0,1,2,3]; %! y = [0,0,1,1,0,0]; %! pp = spline (x,y); %! [x,P] = unmkpp (pp); %! assert (P, [-1,2,0,0;0,-1,1,1;1,-1,-1,1], abserr);