Mercurial > hg > octave-lyh
view scripts/sparse/pcg.m @ 17176:19191d0ef0bf
build: Remove second re-definition of octetc_DATA from Makefile.am.
* Makefile.am: Remove second re-definition of octetc_DATA from Makefile.am.
author | Rik <rik@octave.org> |
---|---|
date | Sun, 04 Aug 2013 07:56:41 -0700 |
parents | a4969508008e |
children | b81b9d079515 |
line wrap: on
line source
## Copyright (C) 2004-2012 Piotr Krzyzanowski ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{x} =} pcg (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{m1}, @var{m2}, @var{x0}, @dots{}) ## @deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}, @var{eigest}] =} pcg (@dots{}) ## ## Solve the linear system of equations @code{@var{A} * @var{x} = @var{b}} ## by means of the Preconditioned Conjugate Gradient iterative ## method. The input arguments are ## ## @itemize ## @item ## @var{A} can be either a square (preferably sparse) matrix or a ## function handle, inline function or string containing the name ## of a function which computes @code{@var{A} * @var{x}}. In principle ## @var{A} should be symmetric and positive definite; if @code{pcg} ## finds @var{A} to not be positive definite, you will get a warning ## message and the @var{flag} output parameter will be set. ## ## @item ## @var{b} is the right hand side vector. ## ## @item ## @var{tol} is the required relative tolerance for the residual error, ## @code{@var{b} - @var{A} * @var{x}}. The iteration stops if ## @code{norm (@var{b} - @var{A} * @var{x}) <= ## @var{tol} * norm (@var{b} - @var{A} * @var{x0})}. ## If @var{tol} is empty or is omitted, the function sets ## @code{@var{tol} = 1e-6} by default. ## ## @item ## @var{maxit} is the maximum allowable number of iterations; if ## @code{[]} is supplied for @code{maxit}, or @code{pcg} has less ## arguments, a default value equal to 20 is used. ## ## @item ## @var{m} = @var{m1} * @var{m2} is the (left) preconditioning matrix, so that ## the iteration is (theoretically) equivalent to solving by @code{pcg} ## @code{@var{P} * ## @var{x} = @var{m} \ @var{b}}, with @code{@var{P} = @var{m} \ @var{A}}. ## Note that a proper choice of the preconditioner may dramatically ## improve the overall performance of the method. Instead of matrices ## @var{m1} and @var{m2}, the user may pass two functions which return ## the results of applying the inverse of @var{m1} and @var{m2} to ## a vector (usually this is the preferred way of using the preconditioner). ## If @code{[]} is supplied for @var{m1}, or @var{m1} is omitted, no ## preconditioning is applied. If @var{m2} is omitted, @var{m} = @var{m1} ## will be used as preconditioner. ## ## @item ## @var{x0} is the initial guess. If @var{x0} is empty or omitted, the ## function sets @var{x0} to a zero vector by default. ## @end itemize ## ## The arguments which follow @var{x0} are treated as parameters, and ## passed in a proper way to any of the functions (@var{A} or @var{m}) ## which are passed to @code{pcg}. See the examples below for further ## details. The output arguments are ## ## @itemize ## @item ## @var{x} is the computed approximation to the solution of ## @code{@var{A} * @var{x} = @var{b}}. ## ## @item ## @var{flag} reports on the convergence. @code{@var{flag} = 0} means ## the solution converged and the tolerance criterion given by @var{tol} ## is satisfied. @code{@var{flag} = 1} means that the @var{maxit} limit ## for the iteration count was reached. @code{@var{flag} = 3} reports that ## the (preconditioned) matrix was found not positive definite. ## ## @item ## @var{relres} is the ratio of the final residual to its initial value, ## measured in the Euclidean norm. ## ## @item ## @var{iter} is the actual number of iterations performed. ## ## @item ## @var{resvec} describes the convergence history of the method. ## @code{@var{resvec} (i,1)} is the Euclidean norm of the residual, and ## @code{@var{resvec} (i,2)} is the preconditioned residual norm, ## after the (@var{i}-1)-th iteration, @code{@var{i} = ## 1, 2, @dots{}, @var{iter}+1}. The preconditioned residual norm ## is defined as ## @code{norm (@var{r}) ^ 2 = @var{r}' * (@var{m} \ @var{r})} where ## @code{@var{r} = @var{b} - @var{A} * @var{x}}, see also the ## description of @var{m}. If @var{eigest} is not required, only ## @code{@var{resvec} (:,1)} is returned. ## ## @item ## @var{eigest} returns the estimate for the smallest @code{@var{eigest} ## (1)} and largest @code{@var{eigest} (2)} eigenvalues of the ## preconditioned matrix @code{@var{P} = @var{m} \ @var{A}}. In ## particular, if no preconditioning is used, the estimates for the ## extreme eigenvalues of @var{A} are returned. @code{@var{eigest} (1)} ## is an overestimate and @code{@var{eigest} (2)} is an underestimate, ## so that @code{@var{eigest} (2) / @var{eigest} (1)} is a lower bound ## for @code{cond (@var{P}, 2)}, which nevertheless in the limit should ## theoretically be equal to the actual value of the condition number. ## The method which computes @var{eigest} works only for symmetric positive ## definite @var{A} and @var{m}, and the user is responsible for ## verifying this assumption. ## @end itemize ## ## Let us consider a trivial problem with a diagonal matrix (we exploit the ## sparsity of A) ## ## @example ## @group ## n = 10; ## A = diag (sparse (1:n)); ## b = rand (n, 1); ## [l, u, p, q] = luinc (A, 1.e-3); ## @end group ## @end example ## ## @sc{Example 1:} Simplest use of @code{pcg} ## ## @example ## x = pcg (A,b) ## @end example ## ## @sc{Example 2:} @code{pcg} with a function which computes ## @code{@var{A} * @var{x}} ## ## @example ## @group ## function y = apply_a (x) ## y = [1:N]' .* x; ## endfunction ## ## x = pcg ("apply_a", b) ## @end group ## @end example ## ## @sc{Example 3:} @code{pcg} with a preconditioner: @var{l} * @var{u} ## ## @example ## x = pcg (A, b, 1.e-6, 500, l*u) ## @end example ## ## @sc{Example 4:} @code{pcg} with a preconditioner: @var{l} * @var{u}. ## Faster than @sc{Example 3} since lower and upper triangular matrices ## are easier to invert ## ## @example ## x = pcg (A, b, 1.e-6, 500, l, u) ## @end example ## ## @sc{Example 5:} Preconditioned iteration, with full diagnostics. The ## preconditioner (quite strange, because even the original matrix ## @var{A} is trivial) is defined as a function ## ## @example ## @group ## function y = apply_m (x) ## k = floor (length (x) - 2); ## y = x; ## y(1:k) = x(1:k) ./ [1:k]'; ## endfunction ## ## [x, flag, relres, iter, resvec, eigest] = ... ## pcg (A, b, [], [], "apply_m"); ## semilogy (1:iter+1, resvec); ## @end group ## @end example ## ## @sc{Example 6:} Finally, a preconditioner which depends on a ## parameter @var{k}. ## ## @example ## @group ## function y = apply_M (x, varargin) ## K = varargin@{1@}; ## y = x; ## y(1:K) = x(1:K) ./ [1:K]'; ## endfunction ## ## [x, flag, relres, iter, resvec, eigest] = ... ## pcg (A, b, [], [], "apply_m", [], [], 3) ## @end group ## @end example ## ## References: ## ## @enumerate ## @item ## C.T. Kelley, @cite{Iterative Methods for Linear and Nonlinear Equations}, ## SIAM, 1995. (the base PCG algorithm) ## ## @item ## Y. Saad, @cite{Iterative Methods for Sparse Linear Systems}, ## @nospell{PWS} 1996. (condition number estimate from PCG) ## Revised version of this book is available online at ## @url{http://www-users.cs.umn.edu/~saad/books.html} ## @end enumerate ## ## @seealso{sparse, pcr} ## @end deftypefn ## Author: Piotr Krzyzanowski <piotr.krzyzanowski@mimuw.edu.pl> ## Modified by: Vittoria Rezzonico <vittoria.rezzonico@epfl.ch> ## - Add the ability to provide the pre-conditioner as two separate matrices function [x, flag, relres, iter, resvec, eigest] = pcg (A, b, tol, maxit, m1, m2, x0, varargin) ## M = M1*M2 if (nargin < 7 || isempty (x0)) x = zeros (size (b)); else x = x0; endif if (nargin < 5 || isempty (m1)) exist_m1 = 0; else exist_m1 = 1; endif if (nargin < 6 || isempty (m2)) exist_m2 = 0; else exist_m2 = 1; endif if (nargin < 4 || isempty (maxit)) maxit = min (rows (b), 20); endif maxit += 2; if (nargin < 3 || isempty (tol)) tol = 1e-6; endif preconditioned_residual_out = false; if (nargout > 5) T = zeros (maxit, maxit); preconditioned_residual_out = true; endif ## Assume A is positive definite. matrix_positive_definite = true; p = zeros (size (b)); oldtau = 1; if (isnumeric (A)) ## A is a matrix. r = b - A*x; else ## A should be a function. r = b - feval (A, x, varargin{:}); endif resvec(1,1) = norm (r); alpha = 1; iter = 2; while (resvec (iter-1,1) > tol * resvec (1,1) && iter < maxit) if (exist_m1) if (isnumeric (m1)) y = m1 \ r; else y = feval (m1, r, varargin{:}); endif else y = r; endif if (exist_m2) if (isnumeric (m2)) z = m2 \ y; else z = feval (m2, y, varargin{:}); endif else z = y; endif tau = z' * r; resvec (iter-1,2) = sqrt (tau); beta = tau / oldtau; oldtau = tau; p = z + beta * p; if (isnumeric (A)) ## A is a matrix. w = A * p; else ## A should be a function. w = feval (A, p, varargin{:}); endif ## Needed only for eigest. oldalpha = alpha; alpha = tau / (p'*w); if (alpha <= 0.0) ## Negative matrix. matrix_positive_definite = false; endif x += alpha * p; r -= alpha * w; if (nargout > 5 && iter > 2) T(iter-1:iter, iter-1:iter) = T(iter-1:iter, iter-1:iter) + ... [1 sqrt(beta); sqrt(beta) beta]./oldalpha; ## EVS = eig (T(2:iter-1,2:iter-1)); ## fprintf (stderr,"PCG condest: %g (iteration: %d)\n", max (EVS)/min (EVS),iter); endif resvec (iter,1) = norm (r); iter++; endwhile if (nargout > 5) if (matrix_positive_definite) if (iter > 3) T = T(2:iter-2,2:iter-2); l = eig (T); eigest = [min(l), max(l)]; ## fprintf (stderr, "pcg condest: %g\n", eigest(2)/eigest(1)); else eigest = [NaN, NaN]; warning ("pcg: eigenvalue estimate failed: iteration converged too fast"); endif else eigest = [NaN, NaN]; endif ## Apply the preconditioner once more and finish with the precond ## residual. if (exist_m1) if (isnumeric (m1)) y = m1 \ r; else y = feval (m1, r, varargin{:}); endif else y = r; endif if (exist_m2) if (isnumeric (m2)) z = m2 \ y; else z = feval (m2, y, varargin{:}); endif else z = y; endif resvec (iter-1,2) = sqrt (r' * z); else resvec = resvec(:,1); endif flag = 0; relres = resvec (iter-1,1) ./ resvec(1,1); iter -= 2; if (iter >= maxit - 2) flag = 1; if (nargout < 2) warning ("pcg: maximum number of iterations (%d) reached\n", iter); warning ("the initial residual norm was reduced %g times.\n", ... 1.0 / relres); endif elseif (nargout < 2) fprintf (stderr, "pcg: converged in %d iterations. ", iter); fprintf (stderr, "the initial residual norm was reduced %g times.\n",... 1.0/relres); endif if (! matrix_positive_definite) flag = 3; if (nargout < 2) warning ("pcg: matrix not positive definite?\n"); endif endif endfunction %!demo %! # Simplest usage of pcg (see also 'help pcg') %! %! N = 10; %! A = diag ([1:N]); b = rand (N, 1); %! y = A \ b; # y is the true solution %! x = pcg (A, b); %! printf ("The solution relative error is %g\n", norm (x - y) / norm (y)); %! %! # You shouldn't be afraid if pcg issues some warning messages in this %! # example: watch out in the second example, why it takes N iterations %! # of pcg to converge to (a very accurate, by the way) solution %!demo %! # Full output from pcg, except for the eigenvalue estimates %! # We use this output to plot the convergence history %! %! N = 10; %! A = diag ([1:N]); b = rand (N, 1); %! X = A \ b; # X is the true solution %! [x, flag, relres, iter, resvec] = pcg (A, b); %! printf ("The solution relative error is %g\n", norm (x - X) / norm (X)); %! title ("Convergence history"); %! semilogy ([0:iter], resvec / resvec(1), "o-g"); %! xlabel ("Iteration"); ylabel ("log(||b-Ax||/||b||)"); %! legend ("relative residual"); %!demo %! # Full output from pcg, including the eigenvalue estimates %! # Hilbert matrix is extremely ill-conditioned, so pcg WILL have problems %! %! N = 10; %! A = hilb (N); b = rand (N, 1); %! X = A \ b; # X is the true solution %! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], 200); %! printf ("The solution relative error is %g\n", norm (x - X) / norm (X)); %! printf ("Condition number estimate is %g\n", eigest(2) / eigest(1)); %! printf ("Actual condition number is %g\n", cond (A)); %! title ("Convergence history"); %! semilogy ([0:iter], resvec, ["o-g";"+-r"]); %! xlabel ("Iteration"); ylabel ("log(||b-Ax||)"); %! legend ("absolute residual", "absolute preconditioned residual"); %!demo %! # Full output from pcg, including the eigenvalue estimates %! # We use the 1-D Laplacian matrix for A, and cond(A) = O(N^2) %! # and that's the reason we need some preconditioner; here we take %! # a very simple and not powerful Jacobi preconditioner, %! # which is the diagonal of A %! %! N = 100; %! A = zeros (N, N); %! for i = 1 : N - 1 # form 1-D Laplacian matrix %! A(i:i+1, i:i+1) = [2 -1; -1 2]; %! endfor %! b = rand (N, 1); %! X = A \ b; # X is the true solution %! maxit = 80; %! printf ("System condition number is %g\n", cond (A)); %! # No preconditioner: the convergence is very slow! %! %! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], maxit); %! printf ("System condition number estimate is %g\n", eigest(2) / eigest(1)); %! title ("Convergence history"); %! semilogy ([0:iter], resvec(:,1), "o-g"); %! xlabel ("Iteration"); ylabel ("log(||b-Ax||)"); %! legend ("NO preconditioning: absolute residual"); %! %! pause (1); %! # Test Jacobi preconditioner: it will not help much!!! %! %! M = diag (diag (A)); # Jacobi preconditioner %! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], maxit, M); %! printf ("JACOBI preconditioned system condition number estimate is %g\n", eigest(2) / eigest(1)); %! hold on; %! semilogy ([0:iter], resvec(:,1), "o-r"); %! legend ("NO preconditioning: absolute residual", ... %! "JACOBI preconditioner: absolute residual"); %! %! pause (1); %! # Test nonoverlapping block Jacobi preconditioner: it will help much! %! %! M = zeros (N, N); k = 4; %! for i = 1 : k : N # form 1-D Laplacian matrix %! M(i:i+k-1, i:i+k-1) = A(i:i+k-1, i:i+k-1); %! endfor %! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], maxit, M); %! printf ("BLOCK JACOBI preconditioned system condition number estimate is %g\n", eigest(2) / eigest(1)); %! semilogy ([0:iter], resvec(:,1), "o-b"); %! legend ("NO preconditioning: absolute residual", ... %! "JACOBI preconditioner: absolute residual", ... %! "BLOCK JACOBI preconditioner: absolute residual"); %! hold off; %!test %! # solve small diagonal system %! %! N = 10; %! A = diag ([1:N]); b = rand (N, 1); %! X = A \ b; # X is the true solution %! [x, flag] = pcg (A, b, [], N+1); %! assert (norm (x - X) / norm (X), 0, 1e-10); %! assert (flag, 0); %!test %! # solve small indefinite diagonal system %! # despite A is indefinite, the iteration continues and converges %! # indefiniteness of A is detected %! %! N = 10; %! A = diag([1:N] .* (-ones(1, N) .^ 2)); b = rand (N, 1); %! X = A \ b; # X is the true solution %! [x, flag] = pcg (A, b, [], N+1); %! assert (norm (x - X) / norm (X), 0, 1e-10); %! assert (flag, 3); %!test %! # solve tridiagonal system, do not converge in default 20 iterations %! %! N = 100; %! A = zeros (N, N); %! for i = 1 : N - 1 # form 1-D Laplacian matrix %! A(i:i+1, i:i+1) = [2 -1; -1 2]; %! endfor %! b = ones (N, 1); %! X = A \ b; # X is the true solution %! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, 1e-12); %! assert (flag); %! assert (relres > 1.0); %! assert (iter, 20); # should perform max allowable default number of iterations %!test %! # solve tridiagonal system with 'perfect' preconditioner %! # which converges in one iteration, so the eigest does not %! # work and issues a warning %! %! N = 100; %! A = zeros (N, N); %! for i = 1 : N - 1 # form 1-D Laplacian matrix %! A (i:i+1, i:i+1) = [2 -1; -1 2]; %! endfor %! b = ones (N, 1); %! X = A \ b; # X is the true solution %! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], [], A, [], b); %! assert (norm (x - X) / norm (X), 0, 1e-6); %! assert (flag, 0); %! assert (iter, 1); # should converge in one iteration %! assert (isnan (eigest), isnan ([NaN, NaN]));