Mercurial > hg > octave-lyh
view liboctave/SparseCmplxLU.cc @ 8966:1bba53c0a38d
Implement diag + sparse, diag - sparse, sparse + diag, sparse - diag.
Date: Mon, 9 Mar 2009 17:45:22 -0400
This does not use the typical sparse-mx-ops generator. I suspect the
sematics of elementwise multiplication and division to be rather
controversial, so they are not included. If comparison operations are
added, the implementation should be shifted over to use the typical
generator.
The template in Sparse-diag-op-defs.h likely could use const bools
rather than functional argument operations. I haven't measured which
is optimized more effectively.
Also, the Octave binding layer in op-dm-scm.cc likely could use all
sorts of macro or template trickery, but it's far easier to let Emacs
handle it for now. That would be worth revisiting if further
elementwise sparse and diagonal operations are added.
author | Jason Riedy <jason@acm.org> |
---|---|
date | Mon, 09 Mar 2009 17:49:14 -0400 |
parents | eb63fbe60fab |
children | 97de6c916498 |
line wrap: on
line source
/* Copyright (C) 2004, 2005, 2006, 2007, 2008 David Bateman Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004 Andy Adler This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <vector> #include "lo-error.h" #include "oct-locbuf.h" #include "SparseCmplxLU.h" #include "oct-spparms.h" // Instantiate the base LU class for the types we need. #include "sparse-base-lu.h" #include "sparse-base-lu.cc" template class sparse_base_lu <SparseComplexMatrix, Complex, SparseMatrix, double>; #include "oct-sparse.h" SparseComplexLU::SparseComplexLU (const SparseComplexMatrix& a, const Matrix& piv_thres, bool scale) { #ifdef HAVE_UMFPACK octave_idx_type nr = a.rows (); octave_idx_type nc = a.cols (); // Setup the control parameters Matrix Control (UMFPACK_CONTROL, 1); double *control = Control.fortran_vec (); UMFPACK_ZNAME (defaults) (control); double tmp = octave_sparse_params::get_key ("spumoni"); if (!xisnan (tmp)) Control (UMFPACK_PRL) = tmp; if (piv_thres.nelem() != 2) { tmp = (piv_thres (0) > 1. ? 1. : piv_thres (0)); if (!xisnan (tmp)) Control (UMFPACK_PIVOT_TOLERANCE) = tmp; tmp = (piv_thres (1) > 1. ? 1. : piv_thres (1)); if (!xisnan (tmp)) Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp; } else { tmp = octave_sparse_params::get_key ("piv_tol"); if (!xisnan (tmp)) Control (UMFPACK_PIVOT_TOLERANCE) = tmp; tmp = octave_sparse_params::get_key ("sym_tol"); if (!xisnan (tmp)) Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp; } // Set whether we are allowed to modify Q or not tmp = octave_sparse_params::get_key ("autoamd"); if (!xisnan (tmp)) Control (UMFPACK_FIXQ) = tmp; // Turn-off UMFPACK scaling for LU if (scale) Control (UMFPACK_SCALE) = UMFPACK_SCALE_SUM; else Control (UMFPACK_SCALE) = UMFPACK_SCALE_NONE; UMFPACK_ZNAME (report_control) (control); const octave_idx_type *Ap = a.cidx (); const octave_idx_type *Ai = a.ridx (); const Complex *Ax = a.data (); UMFPACK_ZNAME (report_matrix) (nr, nc, Ap, Ai, reinterpret_cast<const double *> (Ax), 0, 1, control); void *Symbolic; Matrix Info (1, UMFPACK_INFO); double *info = Info.fortran_vec (); int status = UMFPACK_ZNAME (qsymbolic) (nr, nc, Ap, Ai, reinterpret_cast<const double *> (Ax), 0, 0, &Symbolic, control, info); if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexLU::SparseComplexLU symbolic factorization failed"); UMFPACK_ZNAME (report_status) (control, status); UMFPACK_ZNAME (report_info) (control, info); UMFPACK_ZNAME (free_symbolic) (&Symbolic) ; } else { UMFPACK_ZNAME (report_symbolic) (Symbolic, control); void *Numeric; status = UMFPACK_ZNAME (numeric) (Ap, Ai, reinterpret_cast<const double *> (Ax), 0, Symbolic, &Numeric, control, info); UMFPACK_ZNAME (free_symbolic) (&Symbolic) ; cond = Info (UMFPACK_RCOND); if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexLU::SparseComplexLU numeric factorization failed"); UMFPACK_ZNAME (report_status) (control, status); UMFPACK_ZNAME (report_info) (control, info); UMFPACK_ZNAME (free_numeric) (&Numeric); } else { UMFPACK_ZNAME (report_numeric) (Numeric, control); octave_idx_type lnz, unz, ignore1, ignore2, ignore3; status = UMFPACK_ZNAME (get_lunz) (&lnz, &unz, &ignore1, &ignore2, &ignore3, Numeric) ; if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexLU::SparseComplexLU extracting LU factors failed"); UMFPACK_ZNAME (report_status) (control, status); UMFPACK_ZNAME (report_info) (control, info); UMFPACK_ZNAME (free_numeric) (&Numeric); } else { octave_idx_type n_inner = (nr < nc ? nr : nc); if (lnz < 1) Lfact = SparseComplexMatrix (n_inner, nr, static_cast<octave_idx_type> (1)); else Lfact = SparseComplexMatrix (n_inner, nr, lnz); octave_idx_type *Ltp = Lfact.cidx (); octave_idx_type *Ltj = Lfact.ridx (); Complex *Ltx = Lfact.data (); if (unz < 1) Ufact = SparseComplexMatrix (n_inner, nc, static_cast<octave_idx_type> (1)); else Ufact = SparseComplexMatrix (n_inner, nc, unz); octave_idx_type *Up = Ufact.cidx (); octave_idx_type *Uj = Ufact.ridx (); Complex *Ux = Ufact.data (); Rfact = SparseMatrix (nr, nr, nr); for (octave_idx_type i = 0; i < nr; i++) { Rfact.xridx (i) = i; Rfact.xcidx (i) = i; } Rfact.xcidx (nr) = nr; double *Rx = Rfact.data (); P.resize (nr); octave_idx_type *p = P.fortran_vec (); Q.resize (nc); octave_idx_type *q = Q.fortran_vec (); octave_idx_type do_recip; status = UMFPACK_ZNAME (get_numeric) (Ltp, Ltj, reinterpret_cast<double *> (Ltx), 0, Up, Uj, reinterpret_cast <double *> (Ux), 0, p, q, 0, 0, &do_recip, Rx, Numeric); UMFPACK_ZNAME (free_numeric) (&Numeric) ; if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexLU::SparseComplexLU extracting LU factors failed"); UMFPACK_ZNAME (report_status) (control, status); } else { Lfact = Lfact.transpose (); if (do_recip) for (octave_idx_type i = 0; i < nr; i++) Rx[i] = 1.0 / Rx[i]; UMFPACK_ZNAME (report_matrix) (nr, n_inner, Lfact.cidx (), Lfact.ridx (), reinterpret_cast<double *> (Lfact.data()), 0, 1, control); UMFPACK_ZNAME (report_matrix) (n_inner, nc, Ufact.cidx (), Ufact.ridx (), reinterpret_cast<double *> (Ufact.data()), 0, 1, control); UMFPACK_ZNAME (report_perm) (nr, p, control); UMFPACK_ZNAME (report_perm) (nc, q, control); } UMFPACK_ZNAME (report_info) (control, info); } } } #else (*current_liboctave_error_handler) ("UMFPACK not installed"); #endif } SparseComplexLU::SparseComplexLU (const SparseComplexMatrix& a, const ColumnVector& Qinit, const Matrix& piv_thres, bool scale, bool FixedQ, double droptol, bool milu, bool udiag) { #ifdef HAVE_UMFPACK if (milu) (*current_liboctave_error_handler) ("Modified incomplete LU not implemented"); else { octave_idx_type nr = a.rows (); octave_idx_type nc = a.cols (); // Setup the control parameters Matrix Control (UMFPACK_CONTROL, 1); double *control = Control.fortran_vec (); UMFPACK_ZNAME (defaults) (control); double tmp = octave_sparse_params::get_key ("spumoni"); if (!xisnan (tmp)) Control (UMFPACK_PRL) = tmp; if (piv_thres.nelem() != 2) { tmp = (piv_thres (0) > 1. ? 1. : piv_thres (0)); if (!xisnan (tmp)) Control (UMFPACK_PIVOT_TOLERANCE) = tmp; tmp = (piv_thres (1) > 1. ? 1. : piv_thres (1)); if (!xisnan (tmp)) Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp; } else { tmp = octave_sparse_params::get_key ("piv_tol"); if (!xisnan (tmp)) Control (UMFPACK_PIVOT_TOLERANCE) = tmp; tmp = octave_sparse_params::get_key ("sym_tol"); if (!xisnan (tmp)) Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp; } if (droptol >= 0.) Control (UMFPACK_DROPTOL) = droptol; // Set whether we are allowed to modify Q or not if (FixedQ) Control (UMFPACK_FIXQ) = 1.0; else { tmp = octave_sparse_params::get_key ("autoamd"); if (!xisnan (tmp)) Control (UMFPACK_FIXQ) = tmp; } // Turn-off UMFPACK scaling for LU if (scale) Control (UMFPACK_SCALE) = UMFPACK_SCALE_SUM; else Control (UMFPACK_SCALE) = UMFPACK_SCALE_NONE; UMFPACK_ZNAME (report_control) (control); const octave_idx_type *Ap = a.cidx (); const octave_idx_type *Ai = a.ridx (); const Complex *Ax = a.data (); UMFPACK_ZNAME (report_matrix) (nr, nc, Ap, Ai, reinterpret_cast<const double *> (Ax), 0, 1, control); void *Symbolic; Matrix Info (1, UMFPACK_INFO); double *info = Info.fortran_vec (); int status; // Null loop so that qinit is imediately deallocated when not // needed do { OCTAVE_LOCAL_BUFFER (octave_idx_type, qinit, nc); for (octave_idx_type i = 0; i < nc; i++) qinit [i] = static_cast<octave_idx_type> (Qinit (i)); status = UMFPACK_ZNAME (qsymbolic) (nr, nc, Ap, Ai, reinterpret_cast<const double *> (Ax), 0, qinit, &Symbolic, control, info); } while (0); if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexLU::SparseComplexLU symbolic factorization failed"); UMFPACK_ZNAME (report_status) (control, status); UMFPACK_ZNAME (report_info) (control, info); UMFPACK_ZNAME (free_symbolic) (&Symbolic) ; } else { UMFPACK_ZNAME (report_symbolic) (Symbolic, control); void *Numeric; status = UMFPACK_ZNAME (numeric) (Ap, Ai, reinterpret_cast<const double *> (Ax), 0, Symbolic, &Numeric, control, info) ; UMFPACK_ZNAME (free_symbolic) (&Symbolic) ; cond = Info (UMFPACK_RCOND); if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexLU::SparseComplexLU numeric factorization failed"); UMFPACK_ZNAME (report_status) (control, status); UMFPACK_ZNAME (report_info) (control, info); UMFPACK_ZNAME (free_numeric) (&Numeric); } else { UMFPACK_ZNAME (report_numeric) (Numeric, control); octave_idx_type lnz, unz, ignore1, ignore2, ignore3; status = UMFPACK_ZNAME (get_lunz) (&lnz, &unz, &ignore1, &ignore2, &ignore3, Numeric); if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexLU::SparseComplexLU extracting LU factors failed"); UMFPACK_ZNAME (report_status) (control, status); UMFPACK_ZNAME (report_info) (control, info); UMFPACK_ZNAME (free_numeric) (&Numeric); } else { octave_idx_type n_inner = (nr < nc ? nr : nc); if (lnz < 1) Lfact = SparseComplexMatrix (n_inner, nr, static_cast<octave_idx_type> (1)); else Lfact = SparseComplexMatrix (n_inner, nr, lnz); octave_idx_type *Ltp = Lfact.cidx (); octave_idx_type *Ltj = Lfact.ridx (); Complex *Ltx = Lfact.data (); if (unz < 1) Ufact = SparseComplexMatrix (n_inner, nc, static_cast<octave_idx_type> (1)); else Ufact = SparseComplexMatrix (n_inner, nc, unz); octave_idx_type *Up = Ufact.cidx (); octave_idx_type *Uj = Ufact.ridx (); Complex *Ux = Ufact.data (); Rfact = SparseMatrix (nr, nr, nr); for (octave_idx_type i = 0; i < nr; i++) { Rfact.xridx (i) = i; Rfact.xcidx (i) = i; } Rfact.xcidx (nr) = nr; double *Rx = Rfact.data (); P.resize (nr); octave_idx_type *p = P.fortran_vec (); Q.resize (nc); octave_idx_type *q = Q.fortran_vec (); octave_idx_type do_recip; status = UMFPACK_ZNAME (get_numeric) (Ltp, Ltj, reinterpret_cast<double *> (Ltx), 0, Up, Uj, reinterpret_cast<double *> (Ux), 0, p, q, 0, 0, &do_recip, Rx, Numeric) ; UMFPACK_ZNAME (free_numeric) (&Numeric) ; if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexLU::SparseComplexLU extracting LU factors failed"); UMFPACK_ZNAME (report_status) (control, status); } else { Lfact = Lfact.transpose (); if (do_recip) for (octave_idx_type i = 0; i < nr; i++) Rx[i] = 1.0 / Rx[i]; UMFPACK_ZNAME (report_matrix) (nr, n_inner, Lfact.cidx (), Lfact.ridx (), reinterpret_cast<double *> (Lfact.data()), 0, 1, control); UMFPACK_ZNAME (report_matrix) (n_inner, nc, Ufact.cidx (), Ufact.ridx (), reinterpret_cast<double *> (Ufact.data()), 0, 1, control); UMFPACK_ZNAME (report_perm) (nr, p, control); UMFPACK_ZNAME (report_perm) (nc, q, control); } UMFPACK_ZNAME (report_info) (control, info); } } } if (udiag) (*current_liboctave_error_handler) ("Option udiag of incomplete LU not implemented"); } #else (*current_liboctave_error_handler) ("UMFPACK not installed"); #endif } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */