view liboctave/SparseCmplxLU.cc @ 8966:1bba53c0a38d

Implement diag + sparse, diag - sparse, sparse + diag, sparse - diag. Date: Mon, 9 Mar 2009 17:45:22 -0400 This does not use the typical sparse-mx-ops generator. I suspect the sematics of elementwise multiplication and division to be rather controversial, so they are not included. If comparison operations are added, the implementation should be shifted over to use the typical generator. The template in Sparse-diag-op-defs.h likely could use const bools rather than functional argument operations. I haven't measured which is optimized more effectively. Also, the Octave binding layer in op-dm-scm.cc likely could use all sorts of macro or template trickery, but it's far easier to let Emacs handle it for now. That would be worth revisiting if further elementwise sparse and diagonal operations are added.
author Jason Riedy <jason@acm.org>
date Mon, 09 Mar 2009 17:49:14 -0400
parents eb63fbe60fab
children 97de6c916498
line wrap: on
line source

/*

Copyright (C) 2004, 2005, 2006, 2007, 2008 David Bateman
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004 Andy Adler

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <vector>

#include "lo-error.h"
#include "oct-locbuf.h"

#include "SparseCmplxLU.h"
#include "oct-spparms.h"

// Instantiate the base LU class for the types we need.

#include "sparse-base-lu.h"
#include "sparse-base-lu.cc"

template class sparse_base_lu <SparseComplexMatrix, Complex, SparseMatrix, double>;

#include "oct-sparse.h"

SparseComplexLU::SparseComplexLU (const SparseComplexMatrix& a, 
				  const Matrix& piv_thres, bool scale)
{
#ifdef HAVE_UMFPACK
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();

  // Setup the control parameters
  Matrix Control (UMFPACK_CONTROL, 1);
  double *control = Control.fortran_vec ();
  UMFPACK_ZNAME (defaults) (control);

  double tmp = octave_sparse_params::get_key ("spumoni");
  if (!xisnan (tmp))
    Control (UMFPACK_PRL) = tmp;
  if (piv_thres.nelem() != 2)
    {
      tmp = (piv_thres (0) > 1. ? 1. : piv_thres (0));
      if (!xisnan (tmp))
	Control (UMFPACK_PIVOT_TOLERANCE) = tmp;
      tmp = (piv_thres (1) > 1. ? 1. : piv_thres (1));
      if (!xisnan (tmp))
	Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp;
    }
  else
    {
      tmp = octave_sparse_params::get_key ("piv_tol");
      if (!xisnan (tmp))
	Control (UMFPACK_PIVOT_TOLERANCE) = tmp;

      tmp = octave_sparse_params::get_key ("sym_tol");
      if (!xisnan (tmp))
	  Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp;
    }

  // Set whether we are allowed to modify Q or not
  tmp = octave_sparse_params::get_key ("autoamd");
  if (!xisnan (tmp))
    Control (UMFPACK_FIXQ) = tmp;

  // Turn-off UMFPACK scaling for LU 
  if (scale)
    Control (UMFPACK_SCALE) = UMFPACK_SCALE_SUM;
  else
    Control (UMFPACK_SCALE) = UMFPACK_SCALE_NONE;

  UMFPACK_ZNAME (report_control) (control);

  const octave_idx_type *Ap = a.cidx ();
  const octave_idx_type *Ai = a.ridx ();
  const Complex *Ax = a.data ();

  UMFPACK_ZNAME (report_matrix) (nr, nc, Ap, Ai,
				 reinterpret_cast<const double *> (Ax),
				 0, 1, control);

  void *Symbolic;
  Matrix Info (1, UMFPACK_INFO);
  double *info = Info.fortran_vec ();
  int status = UMFPACK_ZNAME (qsymbolic) (nr, nc, Ap, Ai, 
					  reinterpret_cast<const double *> (Ax),
					  0, 0,
					  &Symbolic, control, info);

  if (status < 0)
    {
      (*current_liboctave_error_handler) 
	    ("SparseComplexLU::SparseComplexLU symbolic factorization failed");

      UMFPACK_ZNAME (report_status) (control, status);
      UMFPACK_ZNAME (report_info) (control, info);

      UMFPACK_ZNAME (free_symbolic) (&Symbolic) ;
    }
  else
    {
      UMFPACK_ZNAME (report_symbolic) (Symbolic, control);

      void *Numeric;
      status = UMFPACK_ZNAME (numeric) (Ap, Ai,
					reinterpret_cast<const double *> (Ax),
					0, Symbolic, &Numeric, control,
					info);
      UMFPACK_ZNAME (free_symbolic) (&Symbolic) ;

      cond = Info (UMFPACK_RCOND);

      if (status < 0)
	{
	  (*current_liboctave_error_handler) 
	    ("SparseComplexLU::SparseComplexLU numeric factorization failed");

	  UMFPACK_ZNAME (report_status) (control, status);
	  UMFPACK_ZNAME (report_info) (control, info);

	  UMFPACK_ZNAME (free_numeric) (&Numeric);
	}
      else
	{
	  UMFPACK_ZNAME (report_numeric) (Numeric, control);

	  octave_idx_type lnz, unz, ignore1, ignore2, ignore3;
	  status = UMFPACK_ZNAME (get_lunz) (&lnz, &unz, &ignore1,
					&ignore2, &ignore3, Numeric) ;
	  
	  if (status < 0)
	    {
	      (*current_liboctave_error_handler) 
		("SparseComplexLU::SparseComplexLU extracting LU factors failed");

	      UMFPACK_ZNAME (report_status) (control, status);
	      UMFPACK_ZNAME (report_info) (control, info);

	      UMFPACK_ZNAME (free_numeric) (&Numeric);
	    }
	  else
	    {
	      octave_idx_type n_inner = (nr < nc ? nr : nc);

	      if (lnz < 1)
		Lfact = SparseComplexMatrix (n_inner, nr,
					     static_cast<octave_idx_type> (1));
	      else
		Lfact = SparseComplexMatrix (n_inner, nr, lnz);

	      octave_idx_type *Ltp = Lfact.cidx ();
	      octave_idx_type *Ltj = Lfact.ridx ();
	      Complex *Ltx = Lfact.data ();

	      if (unz < 1)
		Ufact = SparseComplexMatrix (n_inner, nc,
					     static_cast<octave_idx_type> (1));
	      else
		Ufact = SparseComplexMatrix (n_inner, nc, unz);

	      octave_idx_type *Up = Ufact.cidx ();
	      octave_idx_type *Uj = Ufact.ridx ();
	      Complex *Ux = Ufact.data ();
	      
	      Rfact = SparseMatrix (nr, nr, nr);
	      for (octave_idx_type i = 0; i < nr; i++)
		{
		  Rfact.xridx (i) = i;
		  Rfact.xcidx (i) = i;
		}
	      Rfact.xcidx (nr) = nr;
	      double *Rx = Rfact.data ();

	      P.resize (nr);
	      octave_idx_type *p = P.fortran_vec ();

	      Q.resize (nc);
	      octave_idx_type *q = Q.fortran_vec ();

	      octave_idx_type do_recip;
	      status = UMFPACK_ZNAME (get_numeric) (Ltp, Ltj,
						    reinterpret_cast<double *> (Ltx),
						    0, Up, Uj,
						    reinterpret_cast <double *> (Ux),
						    0, p, q, 0, 0,
						    &do_recip, Rx, Numeric);

	      UMFPACK_ZNAME (free_numeric) (&Numeric) ;

	      if (status < 0)
		{
		  (*current_liboctave_error_handler) 
		    ("SparseComplexLU::SparseComplexLU extracting LU factors failed");

		  UMFPACK_ZNAME (report_status) (control, status);
		}
	      else
		{
		  Lfact = Lfact.transpose ();

		  if (do_recip)
		    for (octave_idx_type i = 0; i < nr; i++)
		      Rx[i] = 1.0 / Rx[i];

		  UMFPACK_ZNAME (report_matrix) (nr, n_inner,
					    Lfact.cidx (), Lfact.ridx (), 
					    reinterpret_cast<double *> (Lfact.data()), 
					    0, 1, control);

		  UMFPACK_ZNAME (report_matrix) (n_inner, nc,
					    Ufact.cidx (), Ufact.ridx (), 
					    reinterpret_cast<double *> (Ufact.data()), 
					    0, 1, control);
		  UMFPACK_ZNAME (report_perm) (nr, p, control);
		  UMFPACK_ZNAME (report_perm) (nc, q, control);
		}

	      UMFPACK_ZNAME (report_info) (control, info);
	    }
	}
    }
#else
  (*current_liboctave_error_handler) ("UMFPACK not installed");
#endif
}

SparseComplexLU::SparseComplexLU (const SparseComplexMatrix& a, 
				  const ColumnVector& Qinit, 
				  const Matrix& piv_thres, bool scale,
				  bool FixedQ, double droptol, 
				  bool milu, bool udiag)
{
#ifdef HAVE_UMFPACK
  if (milu)
    (*current_liboctave_error_handler) 
      ("Modified incomplete LU not implemented");   
  else
    {
      octave_idx_type nr = a.rows ();
      octave_idx_type nc = a.cols ();

      // Setup the control parameters
      Matrix Control (UMFPACK_CONTROL, 1);
      double *control = Control.fortran_vec ();
      UMFPACK_ZNAME (defaults) (control);

      double tmp = octave_sparse_params::get_key ("spumoni");
      if (!xisnan (tmp))
	Control (UMFPACK_PRL) = tmp;
      if (piv_thres.nelem() != 2)
	{
	  tmp = (piv_thres (0) > 1. ? 1. : piv_thres (0));
	  if (!xisnan (tmp))
	    Control (UMFPACK_PIVOT_TOLERANCE) = tmp;
	  tmp = (piv_thres (1) > 1. ? 1. : piv_thres (1));
	  if (!xisnan (tmp))
	    Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp;
	}
      else
	{
	  tmp = octave_sparse_params::get_key ("piv_tol");
	  if (!xisnan (tmp))
	    Control (UMFPACK_PIVOT_TOLERANCE) = tmp;

	  tmp = octave_sparse_params::get_key ("sym_tol");
	  if (!xisnan (tmp))
	    Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp;
	}

      if (droptol >= 0.)
	Control (UMFPACK_DROPTOL) = droptol;

      // Set whether we are allowed to modify Q or not
      if (FixedQ)
	Control (UMFPACK_FIXQ) = 1.0;
      else
	{
	  tmp = octave_sparse_params::get_key ("autoamd");
	  if (!xisnan (tmp))
	    Control (UMFPACK_FIXQ) = tmp;
	}

      // Turn-off UMFPACK scaling for LU 
      if (scale)
	Control (UMFPACK_SCALE) = UMFPACK_SCALE_SUM;
      else
	Control (UMFPACK_SCALE) = UMFPACK_SCALE_NONE;

      UMFPACK_ZNAME (report_control) (control);

      const octave_idx_type *Ap = a.cidx ();
      const octave_idx_type *Ai = a.ridx ();
      const Complex *Ax = a.data ();

      UMFPACK_ZNAME (report_matrix) (nr, nc, Ap, Ai, 
				reinterpret_cast<const double *> (Ax), 0,
				1, control);

      void *Symbolic;
      Matrix Info (1, UMFPACK_INFO);
      double *info = Info.fortran_vec ();
      int status;

      // Null loop so that qinit is imediately deallocated when not
      // needed
      do {
	OCTAVE_LOCAL_BUFFER (octave_idx_type, qinit, nc);

	for (octave_idx_type i = 0; i < nc; i++)
	  qinit [i] = static_cast<octave_idx_type> (Qinit (i));

	status = UMFPACK_ZNAME (qsymbolic) (nr, nc, Ap, Ai, 
				       reinterpret_cast<const double *> (Ax),
				       0, qinit, &Symbolic, control, 
				       info);
      } while (0);

      if (status < 0)
	{
	  (*current_liboctave_error_handler) 
	    ("SparseComplexLU::SparseComplexLU symbolic factorization failed");

	  UMFPACK_ZNAME (report_status) (control, status);
	  UMFPACK_ZNAME (report_info) (control, info);

	  UMFPACK_ZNAME (free_symbolic) (&Symbolic) ;
	}
      else
	{
	  UMFPACK_ZNAME (report_symbolic) (Symbolic, control);

	  void *Numeric;
	  status = UMFPACK_ZNAME (numeric) (Ap, Ai, 
				       reinterpret_cast<const double *> (Ax), 0,
				       Symbolic, &Numeric, control, info) ;
	  UMFPACK_ZNAME (free_symbolic) (&Symbolic) ;

	  cond = Info (UMFPACK_RCOND);

	  if (status < 0)
	    {
	      (*current_liboctave_error_handler) 
		("SparseComplexLU::SparseComplexLU numeric factorization failed");

	      UMFPACK_ZNAME (report_status) (control, status);
	      UMFPACK_ZNAME (report_info) (control, info);

	      UMFPACK_ZNAME (free_numeric) (&Numeric);
	    }
	  else
	    {
	      UMFPACK_ZNAME (report_numeric) (Numeric, control);

	      octave_idx_type lnz, unz, ignore1, ignore2, ignore3;
	      status = UMFPACK_ZNAME (get_lunz) (&lnz, &unz,
					    &ignore1, &ignore2, &ignore3, Numeric);
	  
	      if (status < 0)
		{
		  (*current_liboctave_error_handler) 
		    ("SparseComplexLU::SparseComplexLU extracting LU factors failed");

		  UMFPACK_ZNAME (report_status) (control, status);
		  UMFPACK_ZNAME (report_info) (control, info);

		  UMFPACK_ZNAME (free_numeric) (&Numeric);
		}
	      else
		{
		  octave_idx_type n_inner = (nr < nc ? nr : nc);

		  if (lnz < 1)
		    Lfact = SparseComplexMatrix (n_inner, nr,
		       static_cast<octave_idx_type> (1));
		  else
		    Lfact = SparseComplexMatrix (n_inner, nr, lnz);

		  octave_idx_type *Ltp = Lfact.cidx ();
		  octave_idx_type *Ltj = Lfact.ridx ();
		  Complex *Ltx = Lfact.data ();

		  if (unz < 1)
		    Ufact = SparseComplexMatrix (n_inner, nc,
		       static_cast<octave_idx_type> (1));
		  else
		    Ufact = SparseComplexMatrix  (n_inner, nc, unz);

		  octave_idx_type *Up = Ufact.cidx ();
		  octave_idx_type *Uj = Ufact.ridx ();
		  Complex *Ux = Ufact.data ();
	      
		  Rfact = SparseMatrix (nr, nr, nr);
		  for (octave_idx_type i = 0; i < nr; i++)
		    {
		      Rfact.xridx (i) = i;
		      Rfact.xcidx (i) = i;
		    }
		  Rfact.xcidx (nr) = nr;
		  double *Rx = Rfact.data ();

		  P.resize (nr);
		  octave_idx_type *p = P.fortran_vec ();

		  Q.resize (nc);
		  octave_idx_type *q = Q.fortran_vec ();

		  octave_idx_type do_recip;
		  status = 
		    UMFPACK_ZNAME (get_numeric) (Ltp, Ltj, 
					    reinterpret_cast<double *> (Ltx),
					    0, Up, Uj,
					    reinterpret_cast<double *> (Ux), 
					    0, p, q, 0, 0, 
					    &do_recip, Rx, Numeric) ;

		  UMFPACK_ZNAME (free_numeric) (&Numeric) ;

		  if (status < 0)
		    {
		      (*current_liboctave_error_handler) 
			("SparseComplexLU::SparseComplexLU extracting LU factors failed");

		      UMFPACK_ZNAME (report_status) (control, status);
		    }
		  else
		    {
		      Lfact = Lfact.transpose ();

		      if (do_recip)
			for (octave_idx_type i = 0; i < nr; i++)
			  Rx[i] = 1.0 / Rx[i];

		      UMFPACK_ZNAME (report_matrix) (nr, n_inner, 
						Lfact.cidx (), 
						Lfact.ridx (), 
						reinterpret_cast<double *> (Lfact.data()), 
						0, 1, control);

		      UMFPACK_ZNAME (report_matrix) (n_inner, nc, 
						Ufact.cidx (), 
						Ufact.ridx (), 
						reinterpret_cast<double *> (Ufact.data()), 
						0, 1, control);
		      UMFPACK_ZNAME (report_perm) (nr, p, control);
		      UMFPACK_ZNAME (report_perm) (nc, q, control);
		    }

		  UMFPACK_ZNAME (report_info) (control, info);
		}
	    }
	}

      if (udiag)
	(*current_liboctave_error_handler) 
	  ("Option udiag of incomplete LU not implemented");   
    }
#else
  (*current_liboctave_error_handler) ("UMFPACK not installed");
#endif
}

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/