Mercurial > hg > octave-lyh
view src/log.cc @ 531:1be78be437c7
[project @ 1994-07-20 19:44:13 by jwe]
author | jwe |
---|---|
date | Wed, 20 Jul 1994 19:47:27 +0000 |
parents | b9284136189a |
children | 20fbad23ae51 |
line wrap: on
line source
// f-log.cc -*- C++ -*- /* Copyright (C) 1994 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "EIG.h" #include "tree-const.h" #include "user-prefs.h" #include "error.h" #include "gripes.h" #include "defun-dld.h" // XXX FIXME XXX -- the next two functions should really be just one... DEFUN_DLD ("logm", Flogm, Slogm, 2, 1, "logm (X): matrix logarithm") { Octave_object retval; int nargin = args.length (); if (nargin != 2) { print_usage ("logm"); return retval; } tree_constant tmp = args(1).make_numeric ();; if (tmp.rows () == 0 || tmp.columns () == 0) { int flag = user_pref.propagate_empty_matrices; if (flag != 0) { if (flag < 0) gripe_empty_arg ("logm", 0); retval.resize (1, Matrix ()); return retval; } else gripe_empty_arg ("logm", 1); } switch (tmp.const_type ()) { case tree_constant_rep::matrix_constant: { Matrix m = tmp.matrix_value (); int nr = m.rows (); int nc = m.columns (); if (nr == 0 || nc == 0 || nr != nc) gripe_square_matrix_required ("logm"); else { EIG m_eig (m); ComplexColumnVector lambda (m_eig.eigenvalues ()); ComplexMatrix Q (m_eig.eigenvectors ()); for (int i = 0; i < nr; i++) { Complex elt = lambda.elem (i); if (imag (elt) == 0.0 && real (elt) > 0.0) lambda.elem (i) = log (real (elt)); else lambda.elem (i) = log (elt); } ComplexDiagMatrix D (lambda); ComplexMatrix result = Q * D * Q.inverse (); retval(0) = result; } } break; case tree_constant_rep::complex_matrix_constant: { ComplexMatrix m = tmp.complex_matrix_value (); int nr = m.rows (); int nc = m.columns (); if (nr == 0 || nc == 0 || nr != nc) gripe_square_matrix_required ("logm"); else { EIG m_eig (m); ComplexColumnVector lambda (m_eig.eigenvalues ()); ComplexMatrix Q (m_eig.eigenvectors ()); for (int i = 0; i < nr; i++) { Complex elt = lambda.elem (i); if (imag (elt) == 0.0 && real (elt) > 0.0) lambda.elem (i) = log (real (elt)); else lambda.elem (i) = log (elt); } ComplexDiagMatrix D (lambda); ComplexMatrix result = Q * D * Q.inverse (); retval(0) = result; } } break; case tree_constant_rep::scalar_constant: { double d = tmp.double_value (); if (d > 0.0) retval(0) = log (d); else { Complex dtmp (d); retval(0) = log (dtmp); } } break; case tree_constant_rep::complex_scalar_constant: { Complex c = tmp.complex_value (); retval(0) = log (c); } break; default: break; } return retval; } DEFUN_DLD ("sqrtm", Fsqrtm, Ssqrtm, 2, 1, "sqrtm (X): matrix sqrt") { Octave_object retval; int nargin = args.length (); if (nargin != 2) { print_usage ("sqrtm"); return retval; } tree_constant tmp = args(1).make_numeric ();; if (tmp.rows () == 0 || tmp.columns () == 0) { int flag = user_pref.propagate_empty_matrices; if (flag != 0) { if (flag < 0) gripe_empty_arg ("sqrtm", 0); retval.resize (1, Matrix ()); return retval; } else gripe_empty_arg ("sqrtm", 1); } switch (tmp.const_type ()) { case tree_constant_rep::matrix_constant: { Matrix m = tmp.matrix_value (); int nr = m.rows (); int nc = m.columns (); if (nr == 0 || nc == 0 || nr != nc) gripe_square_matrix_required ("sqrtm"); else { EIG m_eig (m); ComplexColumnVector lambda (m_eig.eigenvalues ()); ComplexMatrix Q (m_eig.eigenvectors ()); for (int i = 0; i < nr; i++) { Complex elt = lambda.elem (i); if (imag (elt) == 0.0 && real (elt) > 0.0) lambda.elem (i) = sqrt (real (elt)); else lambda.elem (i) = sqrt (elt); } ComplexDiagMatrix D (lambda); ComplexMatrix result = Q * D * Q.inverse (); retval(0) = result; } } break; case tree_constant_rep::complex_matrix_constant: { ComplexMatrix m = tmp.complex_matrix_value (); int nr = m.rows (); int nc = m.columns (); if (nr == 0 || nc == 0 || nr != nc) gripe_square_matrix_required ("sqrtm"); else { EIG m_eig (m); ComplexColumnVector lambda (m_eig.eigenvalues ()); ComplexMatrix Q (m_eig.eigenvectors ()); for (int i = 0; i < nr; i++) { Complex elt = lambda.elem (i); if (imag (elt) == 0.0 && real (elt) > 0.0) lambda.elem (i) = sqrt (real (elt)); else lambda.elem (i) = sqrt (elt); } ComplexDiagMatrix D (lambda); ComplexMatrix result = Q * D * Q.inverse (); retval(0) = result; } } break; case tree_constant_rep::scalar_constant: { double d = tmp.double_value (); if (d > 0.0) retval(0) = sqrt (d); else { Complex dtmp (d); retval(0) = sqrt (dtmp); } } break; case tree_constant_rep::complex_scalar_constant: { Complex c = tmp.complex_value (); retval(0) = log (c); } break; default: break; } return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; page-delimiter: "^/\\*" *** ;;; End: *** */