Mercurial > hg > octave-lyh
view scripts/set/ismember.m @ 9051:1bf0ce0930be
Grammar check TexInfo in all .m files
Cleanup documentation sources to follow a few consistent rules.
Spellcheck was NOT done. (but will be in another changeset)
author | Rik <rdrider0-list@yahoo.com> |
---|---|
date | Fri, 27 Mar 2009 22:31:03 -0700 |
parents | eb63fbe60fab |
children | f5e4b5fd1f1e |
line wrap: on
line source
## Copyright (C) 2000, 2005, 2006, 2007, 2008, 2009 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{tf}, @var{a_idx}] =} ismember (@var{A}, @var{S}) ## @deftypefnx {Function File} {[@var{tf}, @var{a_idx}] =} ismember (@var{A}, @var{S}, "rows") ## Return a matrix @var{tf} the same shape as @var{A} which has 1 if ## @code{A(i,j)} is in @var{S} or 0 if it isn't. If a second output argument ## is requested, the indexes into @var{S} of the matching elements are ## also returned. ## ## @example ## @group ## a = [3, 10, 1]; ## s = [0:9]; ## [tf, a_idx] = residue (a, s); ## @result{} tf = [1, 0, 1] ## @result{} a_idx = [4, 0, 2] ## @end group ## @end example ## ## The inputs, @var{A} and @var{S}, may also be cell arrays. ## ## @example ## @group ## a = @{'abc'@}; ## s = @{'abc', 'def'@}; ## [tf, a_idx] = residue (a, s); ## @result{} tf = [1, 0] ## @result{} a_idx = [1, 0] ## @end group ## @end example ## ## With the optional third argument @code{"rows"}, and matrices ## @var{A} and @var{S} with the same number of columns, compare rows in ## @var{A} with the rows in @var{S}. ## ## @example ## @group ## a = [1:3; 5:7; 4:6]; ## s = [0:2; 1:3; 2:4; 3:5; 4:6]; ## [tf, a_idx] = ismember(a, s, 'rows'); ## @result{} tf = logical ([1; 0; 1]) ## @result{} a_idx = [2; 0; 5]; ## @end group ## @end example ## ## @seealso{unique, union, intersect, setxor, setdiff} ## @end deftypefn ## Author: Paul Kienzle <pkienzle@users.sf.net> ## Author: Søren Hauberg <hauberg@gmail.com> ## Author: Ben Abbott <bpabbott@mac.com> ## Adapted-by: jwe function [tf, a_idx] = ismember (a, s, rows_opt) if (nargin == 2 || nargin == 3) if (iscell (a) || iscell (s)) if (nargin == 3) error ("ismember: with 'rows' both sets must be matrices"); else [tf, a_idx] = cell_ismember (a, s); endif else if (nargin == 3) ## The 'rows' argument is handled in a fairly ugly way. A better ## solution would be to vectorize this loop over 'r' below. if (strcmpi (rows_opt, "rows") && ismatrix (a) && ismatrix (s) && columns (a) == columns (s)) rs = rows (s); ra = rows (a); a_idx = zeros (ra, 1); for r = 1:ra tmp = ones (rs, 1) * a(r,:); f = find (all (tmp' == s'), 1); if (! isempty (f)) a_idx(r) = f; endif endfor tf = logical (a_idx); elseif (strcmpi (rows_opt, "rows")) error ("ismember: with 'rows' both sets must be matrices with an equal number of columns"); else error ("ismember: invalid input"); endif else ## Input checking if (! isa (a, class (s))) error ("ismember: both input arguments must be the same type"); elseif (! ischar (a) && ! isnumeric (a)) error ("ismember: input arguments must be arrays, cell arrays, or strings"); elseif (ischar (a) && ischar (s)) a = uint8 (a); s = uint8 (s); endif ## Convert matrices to vectors. if (all (size (a) > 1)) a = a(:); endif if (all (size (s) > 1)) s = s(:); endif ## Do the actual work. if (isempty (a) || isempty (s)) tf = zeros (size (a), "logical"); a_idx = zeros (size (a)); elseif (numel (s) == 1) tf = (a == s); a_idx = double (tf); elseif (numel (a) == 1) f = find (a == s, 1); tf = !isempty (f); a_idx = f; if (isempty (a_idx)) a_idx = 0; endif else ## Magic: the following code determines for each a, the index i ## such that s(i)<= a < s(i+1). It does this by sorting the a ## into s and remembering the source index where each element came ## from. Since all the a's originally came after all the s's, if ## the source index is less than the length of s, then the element ## came from s. We can then do a cumulative sum on the indices to ## figure out which element of s each a comes after. ## E.g., s=[2 4 6], a=[1 2 3 4 5 6 7] ## unsorted [s a] = [ 2 4 6 1 2 3 4 5 6 7 ] ## sorted [s a] = [ 1 2 2 3 4 4 5 6 6 7 ] ## source index p = [ 4 1 5 6 2 7 8 3 9 10 ] ## boolean p<=l(s) = [ 0 1 0 0 1 0 0 1 0 0 ] ## cumsum(p<=l(s)) = [ 0 1 1 1 2 2 2 3 3 3 ] ## Note that this leaves a(1) coming after s(0) which doesn't ## exist. So arbitrarily, we will dump all elements less than ## s(1) into the interval after s(1). We do this by dropping s(1) ## from the sort! E.g., s=[2 4 6], a=[1 2 3 4 5 6 7] ## unsorted [s(2:3) a] =[4 6 1 2 3 4 5 6 7 ] ## sorted [s(2:3) a] = [ 1 2 3 4 4 5 6 6 7 ] ## source index p = [ 3 4 5 1 6 7 2 8 9 ] ## boolean p<=l(s)-1 = [ 0 0 0 1 0 0 1 0 0 ] ## cumsum(p<=l(s)-1) = [ 0 0 0 1 1 1 2 2 2 ] ## Now we can use Octave's lvalue indexing to "invert" the sort, ## and assign all these indices back to the appropriate a and s, ## giving s_idx = [ -- 1 2], a_idx = [ 0 0 0 1 1 2 2 ]. Add 1 to ## a_idx, and we know which interval s(i) contains a. It is ## easy to now check membership by comparing s(a_idx) == a. This ## magic works because s starts out sorted, and because sort ## preserves the relative order of identical elements. lt = numel(s); [s, sidx] = sort (s); [v, p] = sort ([s(2:lt)(:); a(:)]); idx(p) = cumsum (p <= lt-1) + 1; idx = idx(lt:end); tf = (a == reshape (s(idx), size (a))); a_idx = zeros (size (tf)); a_idx(tf) = sidx(idx(tf)); endif ## Resize result to the original size of 'a' size_a = size (a); tf = reshape (tf, size_a); a_idx = reshape (a_idx, size_a); endif endif else print_usage (); endif endfunction function [tf, a_idx] = cell_ismember (a, s) if (nargin == 2) if (ischar (a) && iscellstr (s)) if (isempty (a)) ## Work around bug in cellstr. a = {''}; else a = cellstr (a); endif elseif (iscellstr (a) && ischar (s)) if (isempty (s)) ## Work around bug in cellstr. s = {''}; else s = cellstr (s); endif endif if (iscellstr (a) && iscellstr (s)) ## Do the actual work. if (isempty (a) || isempty (s)) tf = zeros (size (a), "logical"); a_idx = zeros (size (a)); elseif (numel (s) == 1) tf = strcmp (a, s); a_idx = double (tf); elseif (numel (a) == 1) f = find (strcmp (a, s), 1); tf = !isempty (f); a_idx = f; if (isempty (a_idx)) a_idx = 0; endif else lt = numel (s); [s, sidx] = sort (s); [v, p] = sort ([s(2:lt)(:); a(:)]); idx(p) = cumsum (p <= lt-1) + 1; idx = idx(lt:end); tf = (cellfun ("length", a) == reshape (cellfun ("length", s(idx)), size (a))); idx2 = find (tf); tf(idx2) = (all (char (a(idx2)) == char (s(idx)(idx2)), 2)); a_idx = zeros (size (tf)); a_idx(tf) = sidx(idx(tf)); endif else error ("cell_ismember: arguments must be cell arrays of character strings"); endif else print_usage (); endif ## Resize result to the original size of A. size_a = size (a); tf = reshape (tf, size_a); a_idx = reshape (a_idx, size_a); endfunction %!assert (ismember ({''}, {'abc', 'def'}), false); %!assert (ismember ('abc', {'abc', 'def'}), true); %!assert (isempty (ismember ([], [1, 2])), true); %!assert (isempty (ismember ({}, {'a', 'b'})), true); %!assert (ismember ('', {'abc', 'def'}), false); %!fail ('ismember ([], {1, 2})'); %!fail ('ismember ({[]}, {1, 2})'); %!fail ('ismember ({}, {1, 2})'); %!fail ('ismember ({1}, {''1'', ''2''})'); %!fail ('ismember (1, ''abc'')'); %!fail ('ismember ({''1''}, {''1'', ''2''},''rows'')'); %!fail ('ismember ([1 2 3], [5 4 3 1], ''rows'')'); %!assert (ismember ({'foo', 'bar'}, {'foobar'}), logical ([0, 0])); %!assert (ismember ({'foo'}, {'foobar'}), false); %!assert (ismember ({'bar'}, {'foobar'}), false); %!assert (ismember ({'bar'}, {'foobar', 'bar'}), true); %!assert (ismember ({'foo', 'bar'}, {'foobar', 'bar'}), logical ([0, 1])); %!assert (ismember ({'xfb', 'f', 'b'}, {'fb', 'b'}), logical ([0, 0, 1])); %!assert (ismember ("1", "0123456789."), true); %!test %! [result, a_idx] = ismember ([1, 2], []); %! assert (result, logical ([0, 0])) %! assert (a_idx, [0, 0]); %!test %! [result, a_idx] = ismember ([], [1, 2]); %! assert (result, logical ([])) %! assert (a_idx, []); %!test %! [result, a_idx] = ismember ({'a', 'b'}, ''); %! assert (result, logical ([0, 0])) %! assert (a_idx, [0, 0]); %!test %! [result, a_idx] = ismember ({'a', 'b'}, {}); %! assert (result, logical ([0, 0])) %! assert (a_idx, [0, 0]); %!test %! [result, a_idx] = ismember ('', {'a', 'b'}); %! assert (result, false) %! assert (a_idx, 0); %!test %! [result, a_idx] = ismember ({}, {'a', 'b'}); %! assert (result, logical ([])) %! assert (a_idx, []); %!test %! [result, a_idx] = ismember([1 2 3 4 5], [3]); %! assert (all (result == logical ([0 0 1 0 0])) && all (a_idx == [0 0 1 0 0])); %!test %! [result, a_idx] = ismember([1 6], [1 2 3 4 5 1 6 1]); %! assert (all (result == logical ([1 1])) && all (a_idx == [8 7])); %!test %! [result, a_idx] = ismember ([3,10,1], [0,1,2,3,4,5,6,7,8,9]); %! assert (all (result == logical ([1, 0, 1])) && all (a_idx == [4, 0, 2])); %!test %! [result, a_idx] = ismember ("1.1", "0123456789.1"); %! assert (all (result == logical ([1, 1, 1])) && all (a_idx == [12, 11, 12])); %!test %! [result, a_idx] = ismember([1:3; 5:7; 4:6], [0:2; 1:3; 2:4; 3:5; 4:6], 'rows'); %! assert (all (result == logical ([1; 0; 1])) && all (a_idx == [2; 0; 5])); %!test %! [result, a_idx] = ismember([1.1,1.2,1.3; 2.1,2.2,2.3; 10,11,12], [1.1,1.2,1.3; 10,11,12; 2.12,2.22,2.32], 'rows'); %! assert (all (result == logical ([1; 0; 1])) && all (a_idx == [1; 0; 2]));