Mercurial > hg > octave-lyh
view scripts/statistics/base/kendall.m @ 9051:1bf0ce0930be
Grammar check TexInfo in all .m files
Cleanup documentation sources to follow a few consistent rules.
Spellcheck was NOT done. (but will be in another changeset)
author | Rik <rdrider0-list@yahoo.com> |
---|---|
date | Fri, 27 Mar 2009 22:31:03 -0700 |
parents | eb63fbe60fab |
children | f0c3d3fc4903 |
line wrap: on
line source
## Copyright (C) 1995, 1996, 1997, 1998, 2000, 2002, 2005, 2006, 2007, 2009 ## Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} kendall (@var{x}, @var{y}) ## Compute Kendall's @var{tau} for each of the variables specified by ## the input arguments. ## ## For matrices, each row is an observation and each column a variable; ## vectors are always observations and may be row or column vectors. ## ## @code{kendall (@var{x})} is equivalent to @code{kendall (@var{x}, ## @var{x})}. ## ## For two data vectors @var{x}, @var{y} of common length @var{n}, ## Kendall's @var{tau} is the correlation of the signs of all rank ## differences of @var{x} and @var{y}; i.e., if both @var{x} and ## @var{y} have distinct entries, then ## ## @iftex ## @tex ## $$ \tau = {1 \over n(n-1)} \sum_{i,j} {\rm sign}(q_i-q_j) {\rm sign}(r_i-r_j) $$ ## @end tex ## @end iftex ## @ifnottex ## @example ## @group ## 1 ## tau = ------- SUM sign (q(i) - q(j)) * sign (r(i) - r(j)) ## n (n-1) i,j ## @end group ## @end example ## @end ifnottex ## ## @noindent ## in which the ## @iftex ## @tex ## $q_i$ and $r_i$ ## @end tex ## @end iftex ## @ifnottex ## @var{q}(@var{i}) and @var{r}(@var{i}) ## @end ifnottex ## are the ranks of ## @var{x} and @var{y}, respectively. ## ## If @var{x} and @var{y} are drawn from independent distributions, ## Kendall's @var{tau} is asymptotically normal with mean 0 and variance ## @iftex ## @tex ## ${2 (2n+5) \over 9n(n-1)}$. ## @end tex ## @end iftex ## @ifnottex ## @code{(2 * (2@var{n}+5)) / (9 * @var{n} * (@var{n}-1))}. ## @end ifnottex ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Kendall's rank correlation tau function tau = kendall (x, y) if ((nargin < 1) || (nargin > 2)) print_usage (); endif if (rows (x) == 1) x = x'; endif [n, c] = size (x); if (nargin == 2) if (rows (y) == 1) y = y'; endif if (rows (y) != n) error ("kendall: x and y must have the same number of observations"); else x = [x, y]; endif endif r = ranks (x); m = sign (kron (r, ones (n, 1)) - kron (ones (n, 1), r)); tau = cor (m); if (nargin == 2) tau = tau (1 : c, (c + 1) : columns (x)); endif endfunction