Mercurial > hg > octave-lyh
view scripts/statistics/base/std.m @ 9051:1bf0ce0930be
Grammar check TexInfo in all .m files
Cleanup documentation sources to follow a few consistent rules.
Spellcheck was NOT done. (but will be in another changeset)
author | Rik <rdrider0-list@yahoo.com> |
---|---|
date | Fri, 27 Mar 2009 22:31:03 -0700 |
parents | f464119ec165 |
children | f0c3d3fc4903 |
line wrap: on
line source
## Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2005, 2006, 2007, 2008, ## 2009 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} std (@var{x}) ## @deftypefnx {Function File} {} std (@var{x}, @var{opt}) ## @deftypefnx {Function File} {} std (@var{x}, @var{opt}, @var{dim}) ## If @var{x} is a vector, compute the standard deviation of the elements ## of @var{x}. ## @iftex ## @tex ## $$ ## {\rm std} (x) = \sigma (x) = \sqrt{{\sum_{i=1}^N (x_i - \bar{x})^2 \over N - 1}} ## $$ ## where $\bar{x}$ is the mean value of $x$. ## @end tex ## @end iftex ## @ifnottex ## ## @example ## @group ## std (x) = sqrt (sumsq (x - mean (x)) / (n - 1)) ## @end group ## @end example ## @end ifnottex ## If @var{x} is a matrix, compute the standard deviation for ## each column and return them in a row vector. ## ## The argument @var{opt} determines the type of normalization to use. Valid values ## are ## ## @table @asis ## @item 0: ## normalizes with @math{N-1}, provides the square root of best unbiased estimator of ## the variance [default] ## @item 1: ## normalizes with @math{N}, this provides the square root of the second moment around ## the mean ## @end table ## ## The third argument @var{dim} determines the dimension along which the standard ## deviation is calculated. ## @seealso{mean, median} ## @end deftypefn ## Author: jwe function retval = std (a, opt, dim) if (nargin < 1 || nargin > 3) print_usage (); endif if nargin < 3 dim = find (size (a) > 1, 1); if (isempty (dim)) dim = 1; endif endif if (nargin < 2 || isempty (opt)) opt = 0; endif n = size (a, dim); if (n == 1) retval = zeros (sz); elseif (numel (a) > 0) retval = sqrt (sumsq (center (a, dim), dim) / (n + opt - 1)); else error ("std: x must not be empty"); endif endfunction %!test %! x = ones (10, 2); %! y = [1, 3]; %! assert(std (x) == [0, 0] && abs (std (y) - sqrt (2)) < sqrt (eps)); %!error std (); %!error std (1, 2, 3, 4);