Mercurial > hg > octave-lyh
view scripts/optimization/fsolve.m @ 17346:1c89599167a6
maint: End m-files with 1 blank line.
Simplifies automated grammarchecking script.
* scripts/@ftp/ascii.m, scripts/@ftp/binary.m, scripts/@ftp/cd.m,
scripts/@ftp/close.m, scripts/@ftp/delete.m, scripts/@ftp/dir.m,
scripts/@ftp/display.m, scripts/@ftp/ftp.m, scripts/@ftp/loadobj.m,
scripts/@ftp/mget.m, scripts/@ftp/mkdir.m, scripts/@ftp/mput.m,
scripts/@ftp/rename.m, scripts/@ftp/rmdir.m, scripts/@ftp/saveobj.m,
scripts/audio/lin2mu.m, scripts/audio/loadaudio.m, scripts/audio/mu2lin.m,
scripts/audio/record.m, scripts/audio/saveaudio.m, scripts/audio/setaudio.m,
scripts/deprecated/__error_text__.m, scripts/deprecated/cut.m,
scripts/deprecated/error_text.m, scripts/deprecated/isstr.m,
scripts/deprecated/polyderiv.m, scripts/deprecated/studentize.m,
scripts/deprecated/sylvester_matrix.m, scripts/general/bicubic.m,
scripts/general/celldisp.m, scripts/general/colon.m,
scripts/general/cplxpair.m, scripts/general/del2.m, scripts/general/display.m,
scripts/general/isdir.m, scripts/general/isequaln.m, scripts/general/loadobj.m,
scripts/general/private/__isequal__.m, scripts/general/private/__splinen__.m,
scripts/general/profexplore.m, scripts/general/quadgk.m,
scripts/general/randi.m, scripts/general/repmat.m, scripts/general/saveobj.m,
scripts/geometry/delaunay.m, scripts/help/__unimplemented__.m,
scripts/help/doc_cache_create.m, scripts/help/get_first_help_sentence.m,
scripts/help/help.m, scripts/help/print_usage.m,
scripts/help/private/__additional_help_message__.m,
scripts/help/private/__strip_html_tags__.m, scripts/help/type.m,
scripts/image/imfinfo.m, scripts/image/imformats.m, scripts/image/imread.m,
scripts/image/imwrite.m, scripts/image/private/__imfinfo__.m,
scripts/image/private/__imread__.m, scripts/image/private/__imwrite__.m,
scripts/image/private/imageIO.m, scripts/image/private/imwrite_filename.m,
scripts/image/private/ind2x.m, scripts/io/beep.m, scripts/io/strread.m,
scripts/io/textread.m, scripts/io/textscan.m, scripts/linear-algebra/krylov.m,
scripts/linear-algebra/subspace.m, scripts/miscellaneous/bug_report.m,
scripts/miscellaneous/bunzip2.m, scripts/miscellaneous/cast.m,
scripts/miscellaneous/copyfile.m, scripts/miscellaneous/debug.m,
scripts/miscellaneous/dir.m, scripts/miscellaneous/dump_prefs.m,
scripts/miscellaneous/error_ids.m, scripts/miscellaneous/fileattrib.m,
scripts/miscellaneous/gunzip.m, scripts/miscellaneous/isdeployed.m,
scripts/miscellaneous/ismac.m, scripts/miscellaneous/mex.m,
scripts/miscellaneous/mexext.m, scripts/miscellaneous/mkoctfile.m,
scripts/miscellaneous/movefile.m, scripts/miscellaneous/namelengthmax.m,
scripts/miscellaneous/news.m, scripts/miscellaneous/pack.m,
scripts/miscellaneous/perl.m,
scripts/miscellaneous/private/display_info_file.m,
scripts/miscellaneous/python.m, scripts/miscellaneous/rmappdata.m,
scripts/miscellaneous/run.m, scripts/miscellaneous/tar.m,
scripts/miscellaneous/tempname.m, scripts/miscellaneous/untar.m,
scripts/miscellaneous/unzip.m, scripts/miscellaneous/what.m,
scripts/miscellaneous/zip.m, scripts/optimization/fminunc.m,
scripts/optimization/fsolve.m, scripts/optimization/fzero.m,
scripts/optimization/glpk.m, scripts/optimization/optimget.m,
scripts/optimization/optimset.m, scripts/optimization/qp.m,
scripts/optimization/sqp.m, scripts/path/pathdef.m, scripts/pkg/pkg.m,
scripts/pkg/private/build.m, scripts/pkg/private/describe.m,
scripts/pkg/private/dirempty.m, scripts/pkg/private/get_forge_download.m,
scripts/pkg/private/get_forge_pkg.m,
scripts/pkg/private/get_unsatisfied_deps.m, scripts/pkg/private/install.m,
scripts/pkg/private/is_architecture_dependent.m,
scripts/pkg/private/list_forge_packages.m, scripts/pkg/private/rebuild.m,
scripts/pkg/private/shell.m, scripts/pkg/private/uninstall.m,
scripts/plot/axes.m, scripts/plot/box.m, scripts/plot/closereq.m,
scripts/plot/diffuse.m, scripts/plot/ezpolar.m, scripts/plot/findfigs.m,
scripts/plot/gco.m, scripts/plot/guidata.m, scripts/plot/guihandles.m,
scripts/plot/hdl2struct.m, scripts/plot/linkprop.m, scripts/plot/peaks.m,
scripts/plot/print.m, scripts/plot/private/__add_datasource__.m,
scripts/plot/private/__axis_label__.m, scripts/plot/private/__clabel__.m,
scripts/plot/private/__color_str_rgb__.m, scripts/plot/private/__contour__.m,
scripts/plot/private/__default_plot_options__.m,
scripts/plot/private/__errcomm__.m, scripts/plot/private/__file_filter__.m,
scripts/plot/private/__fltk_file_filter__.m,
scripts/plot/private/__getlegenddata__.m,
scripts/plot/private/__gnuplot_open_stream__.m,
scripts/plot/private/__gnuplot_print__.m,
scripts/plot/private/__go_draw_axes__.m,
scripts/plot/private/__interp_cube__.m, scripts/plot/private/__is_function__.m,
scripts/plot/private/__line__.m, scripts/plot/private/__marching_cube__.m,
scripts/plot/private/__next_line_style__.m, scripts/plot/private/__patch__.m,
scripts/plot/private/__pie__.m, scripts/plot/private/__pltopt__.m,
scripts/plot/private/__quiver__.m, scripts/plot/private/__scatter__.m,
scripts/plot/private/__stem__.m, scripts/plot/private/__uigetdir_fltk__.m,
scripts/plot/private/__uigetfile_fltk__.m,
scripts/plot/private/__uiobject_split_args__.m,
scripts/plot/private/__uiputfile_fltk__.m, scripts/plot/refresh.m,
scripts/plot/saveas.m, scripts/plot/shg.m, scripts/plot/specular.m,
scripts/plot/sphere.m, scripts/plot/struct2hdl.m, scripts/plot/subplot.m,
scripts/plot/uicontextmenu.m, scripts/plot/uicontrol.m, scripts/plot/uipanel.m,
scripts/plot/uipushtool.m, scripts/plot/uiresume.m,
scripts/plot/uitoggletool.m, scripts/plot/uitoolbar.m, scripts/plot/uiwait.m,
scripts/plot/waitforbuttonpress.m, scripts/polynomial/pchip.m,
scripts/polynomial/polyeig.m, scripts/polynomial/ppval.m,
scripts/prefs/addpref.m, scripts/prefs/getpref.m, scripts/prefs/ispref.m,
scripts/prefs/private/loadprefs.m, scripts/prefs/private/prefsfile.m,
scripts/prefs/private/saveprefs.m, scripts/prefs/setpref.m,
scripts/set/private/validargs.m, scripts/set/unique.m,
scripts/signal/arch_fit.m, scripts/signal/arch_rnd.m,
scripts/signal/arch_test.m, scripts/signal/arma_rnd.m,
scripts/signal/durbinlevinson.m, scripts/signal/fractdiff.m,
scripts/signal/freqz.m, scripts/signal/freqz_plot.m, scripts/signal/hurst.m,
scripts/signal/periodogram.m, scripts/signal/private/rectangle_lw.m,
scripts/signal/private/rectangle_sw.m, scripts/signal/private/triangle_sw.m,
scripts/signal/spectral_adf.m, scripts/signal/spectral_xdf.m,
scripts/signal/stft.m, scripts/signal/synthesis.m, scripts/signal/yulewalker.m,
scripts/sparse/colperm.m, scripts/sparse/eigs.m, scripts/sparse/etreeplot.m,
scripts/sparse/gmres.m, scripts/sparse/private/__sprand_impl__.m,
scripts/sparse/spdiags.m, scripts/sparse/sprandn.m, scripts/specfun/bessel.m,
scripts/specfun/betaln.m, scripts/specfun/expint.m,
scripts/special-matrix/gallery.m, scripts/startup/__finish__.m,
scripts/statistics/base/qqplot.m, scripts/statistics/distributions/tcdf.m,
scripts/statistics/distributions/wienrnd.m,
scripts/statistics/models/logistic_regression.m,
scripts/statistics/models/private/logistic_regression_derivatives.m,
scripts/statistics/models/private/logistic_regression_likelihood.m,
scripts/statistics/tests/anova.m, scripts/statistics/tests/bartlett_test.m,
scripts/statistics/tests/chisquare_test_homogeneity.m,
scripts/statistics/tests/chisquare_test_independence.m,
scripts/statistics/tests/cor_test.m,
scripts/statistics/tests/f_test_regression.m,
scripts/statistics/tests/hotelling_test.m,
scripts/statistics/tests/hotelling_test_2.m,
scripts/statistics/tests/kolmogorov_smirnov_test_2.m,
scripts/statistics/tests/kruskal_wallis_test.m,
scripts/statistics/tests/manova.m, scripts/statistics/tests/mcnemar_test.m,
scripts/statistics/tests/prop_test_2.m, scripts/statistics/tests/run_test.m,
scripts/statistics/tests/sign_test.m, scripts/statistics/tests/t_test.m,
scripts/statistics/tests/t_test_2.m,
scripts/statistics/tests/t_test_regression.m,
scripts/statistics/tests/u_test.m, scripts/statistics/tests/var_test.m,
scripts/statistics/tests/welch_test.m,
scripts/statistics/tests/wilcoxon_test.m, scripts/statistics/tests/z_test.m,
scripts/statistics/tests/z_test_2.m, scripts/strings/strcat.m,
scripts/strings/strjoin.m, scripts/strings/strsplit.m,
scripts/testfun/__have_feature__.m, scripts/testfun/__printf_assert__.m,
scripts/testfun/__prog_output_assert__.m, scripts/testfun/__run_test_suite__.m,
scripts/time/clock.m, scripts/time/datenum.m, scripts/ui/errordlg.m,
scripts/ui/private/message_dialog.m: End m-files with 1 blank line.
author | Rik <rik@octave.org> |
---|---|
date | Wed, 28 Aug 2013 08:33:02 -0700 |
parents | 17be601bc783 |
children |
line wrap: on
line source
## Copyright (C) 2008-2012 VZLU Prague, a.s. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## ## Author: Jaroslav Hajek <highegg@gmail.com> ## -*- texinfo -*- ## @deftypefn {Function File} {} fsolve (@var{fcn}, @var{x0}, @var{options}) ## @deftypefnx {Function File} {[@var{x}, @var{fvec}, @var{info}, @var{output}, @var{fjac}] =} fsolve (@var{fcn}, @dots{}) ## Solve a system of nonlinear equations defined by the function @var{fcn}. ## @var{fcn} should accept a vector (array) defining the unknown variables, ## and return a vector of left-hand sides of the equations. Right-hand sides ## are defined to be zeros. ## In other words, this function attempts to determine a vector @var{x} such ## that @code{@var{fcn} (@var{x})} gives (approximately) all zeros. ## @var{x0} determines a starting guess. The shape of @var{x0} is preserved ## in all calls to @var{fcn}, but otherwise it is treated as a column vector. ## @var{options} is a structure specifying additional options. ## Currently, @code{fsolve} recognizes these options: ## @qcode{"FunValCheck"}, @qcode{"OutputFcn"}, @qcode{"TolX"}, ## @qcode{"TolFun"}, @qcode{"MaxIter"}, @qcode{"MaxFunEvals"}, ## @qcode{"Jacobian"}, @qcode{"Updating"}, @qcode{"ComplexEqn"} ## @qcode{"TypicalX"}, @qcode{"AutoScaling"} and @qcode{"FinDiffType"}. ## ## If @qcode{"Jacobian"} is @qcode{"on"}, it specifies that @var{fcn}, ## called with 2 output arguments, also returns the Jacobian matrix ## of right-hand sides at the requested point. @qcode{"TolX"} specifies ## the termination tolerance in the unknown variables, while ## @qcode{"TolFun"} is a tolerance for equations. Default is @code{1e-7} ## for both @qcode{"TolX"} and @qcode{"TolFun"}. ## ## If @qcode{"AutoScaling"} is on, the variables will be automatically scaled ## according to the column norms of the (estimated) Jacobian. As a result, ## TolF becomes scaling-independent. By default, this option is off, because ## it may sometimes deliver unexpected (though mathematically correct) results. ## ## If @qcode{"Updating"} is @qcode{"on"}, the function will attempt to use ## @nospell{Broyden} updates to update the Jacobian, in order to reduce the ## amount of Jacobian calculations. If your user function always calculates the ## Jacobian (regardless of number of output arguments), this option provides ## no advantage and should be set to false. ## ## @qcode{"ComplexEqn"} is @qcode{"on"}, @code{fsolve} will attempt to solve ## complex equations in complex variables, assuming that the equations possess a ## complex derivative (i.e., are holomorphic). If this is not what you want, ## should unpack the real and imaginary parts of the system to get a real ## system. ## ## For description of the other options, see @code{optimset}. ## ## On return, @var{fval} contains the value of the function @var{fcn} ## evaluated at @var{x}, and @var{info} may be one of the following values: ## ## @table @asis ## @item 1 ## Converged to a solution point. Relative residual error is less than ## specified by TolFun. ## ## @item 2 ## Last relative step size was less that TolX. ## ## @item 3 ## Last relative decrease in residual was less than TolF. ## ## @item 0 ## Iteration limit exceeded. ## ## @item -3 ## The trust region radius became excessively small. ## @end table ## ## Note: If you only have a single nonlinear equation of one variable, using ## @code{fzero} is usually a much better idea. ## ## Note about user-supplied Jacobians: ## As an inherent property of the algorithm, Jacobian is always requested for a ## solution vector whose residual vector is already known, and it is the last ## accepted successful step. Often this will be one of the last two calls, but ## not always. If the savings by reusing intermediate results from residual ## calculation in Jacobian calculation are significant, the best strategy is to ## employ OutputFcn: After a vector is evaluated for residuals, if OutputFcn is ## called with that vector, then the intermediate results should be saved for ## future Jacobian evaluation, and should be kept until a Jacobian evaluation ## is requested or until OutputFcn is called with a different vector, in which ## case they should be dropped in favor of this most recent vector. A short ## example how this can be achieved follows: ## ## @example ## function [fvec, fjac] = user_func (x, optimvalues, state) ## persistent sav = [], sav0 = []; ## if (nargin == 1) ## ## evaluation call ## if (nargout == 1) ## sav0.x = x; # mark saved vector ## ## calculate fvec, save results to sav0. ## elseif (nargout == 2) ## ## calculate fjac using sav. ## endif ## else ## ## outputfcn call. ## if (all (x == sav0.x)) ## sav = sav0; ## endif ## ## maybe output iteration status, etc. ## endif ## endfunction ## ## ## @dots{} ## ## fsolve (@@user_func, x0, optimset ("OutputFcn", @@user_func, @dots{})) ## @end example ## @seealso{fzero, optimset} ## @end deftypefn ## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup. ## PKG_ADD: [~] = __all_opts__ ("fsolve"); function [x, fvec, info, output, fjac] = fsolve (fcn, x0, options = struct ()) ## Get default options if requested. if (nargin == 1 && ischar (fcn) && strcmp (fcn, 'defaults')) x = optimset ("MaxIter", 400, "MaxFunEvals", Inf, ... "Jacobian", "off", "TolX", 1e-7, "TolFun", 1e-7, "OutputFcn", [], "Updating", "on", "FunValCheck", "off", "ComplexEqn", "off", "FinDiffType", "central", "TypicalX", [], "AutoScaling", "off"); return; endif if (nargin < 2 || nargin > 3 || ! ismatrix (x0)) print_usage (); endif if (ischar (fcn)) fcn = str2func (fcn, "global"); elseif (iscell (fcn)) fcn = @(x) make_fcn_jac (x, fcn{1}, fcn{2}); endif xsiz = size (x0); n = numel (x0); has_jac = strcmpi (optimget (options, "Jacobian", "off"), "on"); cdif = strcmpi (optimget (options, "FinDiffType", "central"), "central"); maxiter = optimget (options, "MaxIter", 400); maxfev = optimget (options, "MaxFunEvals", Inf); outfcn = optimget (options, "OutputFcn"); updating = strcmpi (optimget (options, "Updating", "on"), "on"); complexeqn = strcmpi (optimget (options, "ComplexEqn", "off"), "on"); ## Get scaling matrix using the TypicalX option. If set to "auto", the ## scaling matrix is estimated using the Jacobian. typicalx = optimget (options, "TypicalX"); if (isempty (typicalx)) typicalx = ones (n, 1); endif autoscale = strcmpi (optimget (options, "AutoScaling", "off"), "on"); if (! autoscale) dg = 1 ./ typicalx; endif funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on"); if (funvalchk) ## Replace fcn with a guarded version. fcn = @(x) guarded_eval (fcn, x, complexeqn); endif ## These defaults are rather stringent. I think that normally, user ## prefers accuracy to performance. macheps = eps (class (x0)); tolx = optimget (options, "TolX", 1e-7); tolf = optimget (options, "TolFun", 1e-7); factor = 1; niter = 1; nfev = 1; x = x0(:); info = 0; ## Initial evaluation. ## Handle arbitrary shapes of x and f and remember them. fvec = fcn (reshape (x, xsiz)); fsiz = size (fvec); fvec = fvec(:); fn = norm (fvec); m = length (fvec); n = length (x); if (! isempty (outfcn)) optimvalues.iter = niter; optimvalues.funccount = nfev; optimvalues.fval = fn; optimvalues.searchdirection = zeros (n, 1); state = 'init'; stop = outfcn (x, optimvalues, state); if (stop) info = -1; break; endif endif nsuciter = 0; ## Outer loop. while (niter < maxiter && nfev < maxfev && ! info) ## Calculate function value and Jacobian (possibly via FD). if (has_jac) [fvec, fjac] = fcn (reshape (x, xsiz)); ## If the Jacobian is sparse, disable Broyden updating. if (issparse (fjac)) updating = false; endif fvec = fvec(:); nfev ++; else fjac = __fdjac__ (fcn, reshape (x, xsiz), fvec, typicalx, cdif); nfev += (1 + cdif) * length (x); endif ## For square and overdetermined systems, we update a QR ## factorization of the Jacobian to avoid solving a full system in each ## step. In this case, we pass a triangular matrix to __dogleg__. useqr = updating && m >= n && n > 10; if (useqr) ## FIXME: Currently, pivoting is mostly useless because the \ operator ## cannot exploit the resulting props of the triangular factor. ## Unpivoted QR is significantly faster so it doesn't seem right to pivot ## just to get invariance. Original MINPACK didn't pivot either, at least ## when qr updating was used. [q, r] = qr (fjac, 0); endif if (autoscale) ## Get column norms, use them as scaling factors. jcn = norm (fjac, 'columns').'; if (niter == 1) dg = jcn; dg(dg == 0) = 1; else ## Rescale adaptively. ## FIXME: the original minpack used the following rescaling strategy: ## dg = max (dg, jcn); ## but it seems not good if we start with a bad guess yielding Jacobian ## columns with large norms that later decrease, because the corresponding ## variable will still be overscaled. So instead, we only give the old ## scaling a small momentum, but do not honor it. dg = max (0.1*dg, jcn); endif endif if (niter == 1) xn = norm (dg .* x); ## FIXME: something better? delta = factor * max (xn, 1); endif ## It also seems that in the case of fast (and inhomogeneously) changing ## Jacobian, the Broyden updates are of little use, so maybe we could ## skip them if a big disproportional change is expected. The question is, ## of course, how to define the above terms :) lastratio = 0; nfail = 0; nsuc = 0; decfac = 0.5; ## Inner loop. while (niter <= maxiter && nfev < maxfev && ! info) ## Get trust-region model (dogleg) minimizer. if (useqr) qtf = q'*fvec; s = - __dogleg__ (r, qtf, dg, delta); w = qtf + r * s; else s = - __dogleg__ (fjac, fvec, dg, delta); w = fvec + fjac * s; endif sn = norm (dg .* s); if (niter == 1) delta = min (delta, sn); endif fvec1 = fcn (reshape (x + s, xsiz)) (:); fn1 = norm (fvec1); nfev ++; if (fn1 < fn) ## Scaled actual reduction. actred = 1 - (fn1/fn)^2; else actred = -1; endif ## Scaled predicted reduction, and ratio. t = norm (w); if (t < fn) prered = 1 - (t/fn)^2; ratio = actred / prered; else prered = 0; ratio = 0; endif ## Update delta. if (ratio < min (max (0.1, 0.8*lastratio), 0.9)) nsuc = 0; nfail ++; delta *= decfac; decfac ^= 1.4142; if (delta <= 1e1*macheps*xn) ## Trust region became uselessly small. info = -3; break; endif else lastratio = ratio; decfac = 0.5; nfail = 0; nsuc ++; if (abs (1-ratio) <= 0.1) delta = 1.4142*sn; elseif (ratio >= 0.5 || nsuc > 1) delta = max (delta, 1.4142*sn); endif endif if (ratio >= 1e-4) ## Successful iteration. x += s; xn = norm (dg .* x); fvec = fvec1; fn = fn1; nsuciter ++; endif niter ++; ## FIXME: should outputfcn be only called after a successful iteration? if (! isempty (outfcn)) optimvalues.iter = niter; optimvalues.funccount = nfev; optimvalues.fval = fn; optimvalues.searchdirection = s; state = 'iter'; stop = outfcn (x, optimvalues, state); if (stop) info = -1; break; endif endif ## Tests for termination conditions. A mysterious place, anything ## can happen if you change something here... ## The rule of thumb (which I'm not sure M*b is quite following) ## is that for a tolerance that depends on scaling, only 0 makes ## sense as a default value. But 0 usually means uselessly long ## iterations, so we need scaling-independent tolerances wherever ## possible. ## FIXME -- why tolf*n*xn? If abs (e) ~ abs(x) * eps is a vector ## of perturbations of x, then norm (fjac*e) <= eps*n*xn, i.e. by ## tolf ~ eps we demand as much accuracy as we can expect. if (fn <= tolf*n*xn) info = 1; ## The following tests done only after successful step. elseif (ratio >= 1e-4) ## This one is classic. Note that we use scaled variables again, ## but compare to scaled step, so nothing bad. if (sn <= tolx*xn) info = 2; ## Again a classic one. It seems weird to use the same tolf ## for two different tests, but that's what M*b manual appears ## to say. elseif (actred < tolf) info = 3; endif endif ## Criterion for recalculating Jacobian. if (! updating || nfail == 2 || nsuciter < 2) break; endif ## Compute the scaled Broyden update. if (useqr) u = (fvec1 - q*w) / sn; v = dg .* ((dg .* s) / sn); ## Update the QR factorization. [q, r] = qrupdate (q, r, u, v); else u = (fvec1 - w); v = dg .* ((dg .* s) / sn); ## update the Jacobian fjac += u * v'; endif endwhile endwhile ## Restore original shapes. x = reshape (x, xsiz); fvec = reshape (fvec, fsiz); output.iterations = niter; output.successful = nsuciter; output.funcCount = nfev; endfunction ## An assistant function that evaluates a function handle and checks for ## bad results. function [fx, jx] = guarded_eval (fun, x, complexeqn) if (nargout > 1) [fx, jx] = fun (x); else fx = fun (x); jx = []; endif if (! complexeqn && ! (isreal (fx) && isreal (jx))) error ("fsolve:notreal", "fsolve: non-real value encountered"); elseif (complexeqn && ! (isnumeric (fx) && isnumeric (jx))) error ("fsolve:notnum", "fsolve: non-numeric value encountered"); elseif (any (isnan (fx(:)))) error ("fsolve:isnan", "fsolve: NaN value encountered"); elseif (any (isinf (fx(:)))) error ("fsolve:isinf", "fsolve: Inf value encountered"); endif endfunction function [fx, jx] = make_fcn_jac (x, fcn, fjac) fx = fcn (x); if (nargout == 2) jx = fjac (x); endif endfunction %!function retval = __f (p) %! x = p(1); %! y = p(2); %! z = p(3); %! retval = zeros (3, 1); %! retval(1) = sin (x) + y^2 + log (z) - 7; %! retval(2) = 3*x + 2^y -z^3 + 1; %! retval(3) = x + y + z - 5; %!endfunction %!test %! x_opt = [ 0.599054; %! 2.395931; %! 2.005014 ]; %! tol = 1.0e-5; %! [x, fval, info] = fsolve (@__f, [ 0.5; 2.0; 2.5 ]); %! assert (info > 0); %! assert (norm (x - x_opt, Inf) < tol); %! assert (norm (fval) < tol); %!function retval = __f (p) %! x = p(1); %! y = p(2); %! z = p(3); %! w = p(4); %! retval = zeros (4, 1); %! retval(1) = 3*x + 4*y + exp (z + w) - 1.007; %! retval(2) = 6*x - 4*y + exp (3*z + w) - 11; %! retval(3) = x^4 - 4*y^2 + 6*z - 8*w - 20; %! retval(4) = x^2 + 2*y^3 + z - w - 4; %!endfunction %!test %! x_opt = [ -0.767297326653401, 0.590671081117440, ... %! 1.47190018629642, -1.52719341133957 ]; %! tol = 1.0e-5; %! [x, fval, info] = fsolve (@__f, [-1, 1, 2, -1]); %! assert (info > 0); %! assert (norm (x - x_opt, Inf) < tol); %! assert (norm (fval) < tol); %!function retval = __f (p) %! x = p(1); %! y = p(2); %! z = p(3); %! retval = zeros (3, 1); %! retval(1) = sin (x) + y^2 + log (z) - 7; %! retval(2) = 3*x + 2^y -z^3 + 1; %! retval(3) = x + y + z - 5; %! retval(4) = x*x + y - z*log (z) - 1.36; %!endfunction %!test %! x_opt = [ 0.599054; %! 2.395931; %! 2.005014 ]; %! tol = 1.0e-5; %! [x, fval, info] = fsolve (@__f, [ 0.5; 2.0; 2.5 ]); %! assert (info > 0); %! assert (norm (x - x_opt, Inf) < tol); %! assert (norm (fval) < tol); %!function retval = __f (p) %! x = p(1); %! y = p(2); %! z = p(3); %! retval = zeros (3, 1); %! retval(1) = sin (x) + y^2 + log (z) - 7; %! retval(2) = 3*x + 2^y -z^3 + 1; %! retval(3) = x + y + z - 5; %!endfunction %!test %! x_opt = [ 0.599054; %! 2.395931; %! 2.005014 ]; %! tol = 1.0e-5; %! opt = optimset ("Updating", "qrp"); %! [x, fval, info] = fsolve (@__f, [ 0.5; 2.0; 2.5 ], opt); %! assert (info > 0); %! assert (norm (x - x_opt, Inf) < tol); %! assert (norm (fval) < tol); %!test %! b0 = 3; %! a0 = 0.2; %! x = 0:.5:5; %! noise = 1e-5 * sin (100*x); %! y = exp (-a0*x) + b0 + noise; %! c_opt = [a0, b0]; %! tol = 1e-5; %! %! [c, fval, info, output] = fsolve (@(c) (exp(-c(1)*x) + c(2) - y), [0, 0]); %! assert (info > 0); %! assert (norm (c - c_opt, Inf) < tol); %! assert (norm (fval) < norm (noise)); %!function y = cfun (x) %! y(1) = (1+i)*x(1)^2 - (1-i)*x(2) - 2; %! y(2) = sqrt (x(1)*x(2)) - (1-2i)*x(3) + (3-4i); %! y(3) = x(1) * x(2) - x(3)^2 + (3+2i); %!endfunction %!test %! x_opt = [-1+i, 1-i, 2+i]; %! x = [i, 1, 1+i]; %! %! [x, f, info] = fsolve (@cfun, x, optimset ("ComplexEqn", "on")); %! tol = 1e-5; %! assert (norm (f) < tol); %! assert (norm (x - x_opt, Inf) < tol); ## Solve the double dogleg trust-region least-squares problem: ## Minimize norm(r*x-b) subject to the constraint norm(d.*x) <= delta, ## x being a convex combination of the gauss-newton and scaled gradient. ## TODO: error checks ## TODO: handle singularity, or leave it up to mldivide? function x = __dogleg__ (r, b, d, delta) ## Get Gauss-Newton direction. x = r \ b; xn = norm (d .* x); if (xn > delta) ## GN is too big, get scaled gradient. s = (r' * b) ./ d; sn = norm (s); if (sn > 0) ## Normalize and rescale. s = (s / sn) ./ d; ## Get the line minimizer in s direction. tn = norm (r*s); snm = (sn / tn) / tn; if (snm < delta) ## Get the dogleg path minimizer. bn = norm (b); dxn = delta/xn; snmd = snm/delta; t = (bn/sn) * (bn/xn) * snmd; t -= dxn * snmd^2 - sqrt ((t-dxn)^2 + (1-dxn^2)*(1-snmd^2)); alpha = dxn*(1-snmd^2) / t; else alpha = 0; endif else alpha = delta / xn; snm = 0; endif ## Form the appropriate convex combination. x = alpha * x + ((1-alpha) * min (snm, delta)) * s; endif endfunction