Mercurial > hg > octave-lyh
view liboctave/Matrix.cc @ 25:1d4cfd89ebb6
[project @ 1993-08-10 20:38:39 by jwe]
author | jwe |
---|---|
date | Tue, 10 Aug 1993 20:38:39 +0000 |
parents | 9a4c07481e61 |
children | 0fcbd97505ae |
line wrap: on
line source
// Matrix manipulations. -*- C++ -*- /* Copyright (C) 1992, 1993 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ // I\'m not sure how this is supposed to work if the .h file declares // several classes, each of which is defined in a separate file... // // #ifdef __GNUG__ // #pragma implementation // #endif #include "Matrix.h" #include "mx-inlines.cc" /* * Matrix class. */ Matrix::Matrix (int r, int c) { if (r < 0 || c < 0) FAIL; nr = r; nc = c; len = nr * nc; if (len > 0) data = new double [len]; else data = (double *) NULL; } Matrix::Matrix (int r, int c, double val) { if (r < 0 || c < 0) FAIL; nr = r; nc = c; len = nr * nc; if (len > 0) { data = new double [len]; copy (data, len, val); } else data = (double *) NULL; } Matrix::Matrix (const Matrix& a) { nr = a.nr; nc = a.nc; len = a.len; if (len > 0) { data = new double [len]; copy (data, a.data, len); } else data = (double *) NULL; } Matrix::Matrix (const DiagMatrix& a) { nr = a.nr; nc = a.nc; len = nr * nc; if (len > 0) { data = new double [len]; copy (data, len, 0.0); for (int i = 0; i < a.len; i++) data[nr*i+i] = a.data[i]; } else data = (double *) NULL; } Matrix::Matrix (double a) { nr = 1; nc = 1; len = 1; data = new double [1]; data[0] = a; } Matrix& Matrix::operator = (const Matrix& a) { if (this != &a) { delete [] data; nr = a.nr; nc = a.nc; len = a.len; if (len > 0) { data = new double [len]; copy (data, a.data, len); } else data = (double *) NULL; } return *this; } Matrix& Matrix::resize (int r, int c) { if (r < 0 || c < 0) FAIL; int new_len = r * c; double* new_data = (double *) NULL; if (new_len > 0) { new_data = new double [new_len]; int min_r = nr < r ? nr : r; int min_c = nc < c ? nc : c; for (int j = 0; j < min_c; j++) for (int i = 0; i < min_r; i++) new_data[r*j+i] = elem (i, j); } delete [] data; nr = r; nc = c; len = new_len; data = new_data; return *this; } Matrix& Matrix::resize (int r, int c, double val) { if (r < 0 || c < 0) FAIL; int new_len = r * c; double *new_data = (double *) NULL; if (new_len > 0) { new_data = new double [new_len]; // There may be faster or cleaner ways to do this. if (r > nr || c > nc) copy (new_data, new_len, val); int min_r = nr < r ? nr : r; int min_c = nc < c ? nc : c; for (int j = 0; j < min_c; j++) for (int i = 0; i < min_r; i++) new_data[r*j+i] = elem (i, j); } delete [] data; nr = r; nc = c; len = new_len; data = new_data; return *this; } int Matrix::operator == (const Matrix& a) const { if (nr != a.nr || nc != a.nc) return 0; return equal (data, a.data, len); } int Matrix::operator != (const Matrix& a) const { return !(*this == a); } Matrix& Matrix::insert (const Matrix& a, int r, int c) { if (r < 0 || r + a.nr - 1 > nr || c < 0 || c + a.nc - 1 > nc) FAIL; for (int j = 0; j < a.nc; j++) for (int i = 0; i < a.nr; i++) elem (r+i, c+j) = a.elem (i, j); return *this; } Matrix& Matrix::insert (const RowVector& a, int r, int c) { if (r < 0 || r >= nr || c < 0 || c + a.len - 1 > nc) FAIL; for (int i = 0; i < a.len; i++) elem (r, c+i) = a.data[i]; return *this; } Matrix& Matrix::insert (const ColumnVector& a, int r, int c) { if (r < 0 || r + a.len - 1 > nr || c < 0 || c >= nc) FAIL; for (int i = 0; i < a.len; i++) elem (r+i, c) = a.data[i]; return *this; } Matrix& Matrix::insert (const DiagMatrix& a, int r, int c) { if (r < 0 || r + a.nr - 1 > nr || c < 0 || c + a.nc - 1 > nc) FAIL; for (int i = 0; i < a.len; i++) elem (r+i, c+i) = a.data[i]; return *this; } Matrix& Matrix::fill (double val) { if (nr > 0 && nc > 0) copy (data, len, val); return *this; } Matrix& Matrix::fill (double val, int r1, int c1, int r2, int c2) { if (r1 < 0 || r2 < 0 || c1 < 0 || c2 < 0 || r1 >= nr || r2 >= nr || c1 >= nc || c2 >= nc) FAIL; if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } for (int j = c1; j <= c2; j++) for (int i = r1; i <= r2; i++) elem (i, j) = val; return *this; } Matrix Matrix::append (const Matrix& a) const { if (nr != a.nr) FAIL; int nc_insert = nc; Matrix retval (nr, nc + a.nc); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval;; } Matrix Matrix::append (const RowVector& a) const { if (nr != 1) FAIL; int nc_insert = nc; Matrix retval (nr, nc + a.len); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } Matrix Matrix::append (const ColumnVector& a) const { if (nr != a.len) FAIL; int nc_insert = nc; Matrix retval (nr, nc + 1); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } Matrix Matrix::append (const DiagMatrix& a) const { if (nr != a.nr) FAIL; int nc_insert = nc; Matrix retval (nr, nc + a.nc); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } Matrix Matrix::stack (const Matrix& a) const { if (nc != a.nc) FAIL; int nr_insert = nr; Matrix retval (nr + a.nr, nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } Matrix Matrix::stack (const RowVector& a) const { if (nc != a.len) FAIL; int nr_insert = nr; Matrix retval (nr + 1, nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } Matrix Matrix::stack (const ColumnVector& a) const { if (nc != 1) FAIL; int nr_insert = nr; Matrix retval (nr + a.len, nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } Matrix Matrix::stack (const DiagMatrix& a) const { if (nc != a.nc) FAIL; int nr_insert = nr; Matrix retval (nr + a.nr, nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } Matrix Matrix::transpose (void) const { Matrix result; if (len > 0) { result.resize (nc, nr); for (int j = 0; j < nc; j++) for (int i = 0; i < nr; i++) result.data[nc*i+j] = data[nr*j+i]; } return result; } Matrix Matrix::extract (int r1, int c1, int r2, int c2) const { if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } int new_r = r2 - r1 + 1; int new_c = c2 - c1 + 1; Matrix result (new_r, new_c); for (int j = 0; j < new_c; j++) for (int i = 0; i < new_r; i++) result.data[new_r*j+i] = elem (r1+i, c1+j); return result; } // extract row or column i. RowVector Matrix::row (int i) const { if (i < 0 || i >= nr) FAIL; RowVector retval (nc); for (int j = 0; j < nc; j++) retval.elem (j) = elem (i, j); return retval; } RowVector Matrix::row (char *s) const { if (s == (char *) NULL) FAIL; char c = *s; if (c == 'f' || c == 'F') return row (0); else if (c == 'l' || c == 'L') return row (nr - 1); else FAIL; } ColumnVector Matrix::column (int i) const { if (i < 0 || i >= nc) FAIL; ColumnVector retval (nr); for (int j = 0; j < nr; j++) retval.elem (j) = elem (j, i); return retval; } ColumnVector Matrix::column (char *s) const { if (s == (char *) NULL) FAIL; char c = *s; if (c == 'f' || c == 'F') return column (0); else if (c == 'l' || c == 'L') return column (nc - 1); else FAIL; } Matrix Matrix::inverse (int& info, double& rcond) const { if (nr != nc) FAIL; info = 0; int *ipvt = new int [nr]; double *z = new double [nr]; double *tmp_data = dup (data, len); F77_FCN (dgeco) (tmp_data, &nr, &nc, ipvt, &rcond, z); if (rcond + 1.0 == 1.0) { info = -1; copy (tmp_data, data, len); // Restore matrix contents. } else { int job = 1; double dummy; F77_FCN (dgedi) (tmp_data, &nr, &nc, ipvt, &dummy, z, &job); } delete [] ipvt; delete [] z; return Matrix (tmp_data, nr, nc); } Matrix Matrix::inverse (int& info) const { double rcond; return inverse (info, rcond); } Matrix Matrix::inverse (void) const { int info; double rcond; return inverse (info, rcond); } ComplexMatrix Matrix::fourier (void) const { int npts, nsamples; if (nr == 1 || nc == 1) { npts = nr > nc ? nr : nc; nsamples = 1; } else { npts = nr; nsamples = nc; } int nn = 4*npts+15; Complex *wsave = new Complex [nn]; Complex *tmp_data = make_complex (data, len); F77_FCN (cffti) (&npts, wsave); for (int j = 0; j < nsamples; j++) F77_FCN (cfftf) (&npts, &tmp_data[npts*j], wsave); delete [] wsave; return ComplexMatrix (tmp_data, nr, nc); } ComplexMatrix Matrix::ifourier (void) const { int npts, nsamples; if (nr == 1 || nc == 1) { npts = nr > nc ? nr : nc; nsamples = 1; } else { npts = nr; nsamples = nc; } int nn = 4*npts+15; Complex *wsave = new Complex [nn]; Complex *tmp_data = make_complex (data, len); F77_FCN (cffti) (&npts, wsave); for (int j = 0; j < nsamples; j++) F77_FCN (cfftb) (&npts, &tmp_data[npts*j], wsave); for (j = 0; j < npts*nsamples; j++) tmp_data[j] = tmp_data[j] / (double) npts; delete [] wsave; return ComplexMatrix (tmp_data, nr, nc); } DET Matrix::determinant (void) const { int info; double rcond; return determinant (info, rcond); } DET Matrix::determinant (int& info) const { double rcond; return determinant (info, rcond); } DET Matrix::determinant (int& info, double& rcond) const { DET retval; if (nr == 0 || nc == 0) { double d[2]; d[0] = 1.0; d[1] = 0.0; return DET (d); } info = 0; int *ipvt = new int [nr]; double *z = new double [nr]; double *tmp_data = dup (data, len); F77_FCN (dgeco) (tmp_data, &nr, &nr, ipvt, &rcond, z); if (rcond + 1.0 == 1.0) { info = -1; } else { int job = 10; double d[2]; F77_FCN (dgedi) (tmp_data, &nr, &nr, ipvt, d, z, &job); retval = DET (d); } delete [] tmp_data; delete [] ipvt; delete [] z; return retval; } Matrix Matrix::solve (const Matrix& b) const { int info; double rcond; return solve (b, info, rcond); } Matrix Matrix::solve (const Matrix& b, int& info) const { double rcond; return solve (b, info, rcond); } Matrix Matrix::solve (const Matrix& b, int& info, double& rcond) const { Matrix retval; if (nr == 0 || nc == 0 || nr != nc || nr != b.nr) FAIL; info = 0; int *ipvt = new int [nr]; double *z = new double [nr]; double *tmp_data = dup (data, len); F77_FCN (dgeco) (tmp_data, &nr, &nr, ipvt, &rcond, z); if (rcond + 1.0 == 1.0) { info = -2; } else { int job = 0; double *result = dup (b.data, b.len); for (int j = 0; j < b.nc; j++) F77_FCN (dgesl) (tmp_data, &nr, &nr, ipvt, &result[nr*j], &job); retval = Matrix (result, b.nr, b.nc); } delete [] tmp_data; delete [] ipvt; delete [] z; return retval; } ComplexMatrix Matrix::solve (const ComplexMatrix& b) const { ComplexMatrix tmp (*this); return tmp.solve (b); } ComplexMatrix Matrix::solve (const ComplexMatrix& b, int& info) const { ComplexMatrix tmp (*this); return tmp.solve (b, info); } ComplexMatrix Matrix::solve (const ComplexMatrix& b, int& info, double& rcond) const { ComplexMatrix tmp (*this); return tmp.solve (b, info, rcond); } ColumnVector Matrix::solve (const ColumnVector& b) const { int info; double rcond; return solve (b, info, rcond); } ColumnVector Matrix::solve (const ColumnVector& b, int& info) const { double rcond; return solve (b, info, rcond); } ColumnVector Matrix::solve (const ColumnVector& b, int& info, double& rcond) const { ColumnVector retval; if (nr == 0 || nc == 0 || nr != nc || nr != b.len) FAIL; info = 0; int *ipvt = new int [nr]; double *z = new double [nr]; double *tmp_data = dup (data, len); F77_FCN (dgeco) (tmp_data, &nr, &nr, ipvt, &rcond, z); if (rcond + 1.0 == 1.0) { info = -2; } else { int job = 0; double *result = dup (b.data, b.len); F77_FCN (dgesl) (tmp_data, &nr, &nr, ipvt, result, &job); retval = ColumnVector (result, b.len); } delete [] tmp_data; delete [] ipvt; delete [] z; return retval; } ComplexColumnVector Matrix::solve (const ComplexColumnVector& b) const { ComplexMatrix tmp (*this); return tmp.solve (b); } ComplexColumnVector Matrix::solve (const ComplexColumnVector& b, int& info) const { ComplexMatrix tmp (*this); return tmp.solve (b, info); } ComplexColumnVector Matrix::solve (const ComplexColumnVector& b, int& info, double& rcond) const { ComplexMatrix tmp (*this); return tmp.solve (b, info, rcond); } Matrix Matrix::lssolve (const Matrix& b) const { int info; int rank; return lssolve (b, info, rank); } Matrix Matrix::lssolve (const Matrix& b, int& info) const { int rank; return lssolve (b, info, rank); } Matrix Matrix::lssolve (const Matrix& b, int& info, int& rank) const { int nrhs = b.nc; int m = nr; int n = nc; if (m == 0 || n == 0 || m != b.nr) FAIL; double *tmp_data = dup (data, len); int nrr = m > n ? m : n; Matrix result (nrr, nrhs); int i, j; for (j = 0; j < nrhs; j++) for (i = 0; i < m; i++) result.elem (i, j) = b.elem (i, j); double *presult = result.fortran_vec (); int len_s = m < n ? m : n; double *s = new double [len_s]; double rcond = -1.0; int lwork; if (m < n) lwork = 3*m + (2*m > nrhs ? (2*m > n ? 2*m : n) : (nrhs > n ? nrhs : n)); else lwork = 3*n + (2*n > nrhs ? (2*n > m ? 2*n : m) : (nrhs > m ? nrhs : m)); double *work = new double [lwork]; F77_FCN (dgelss) (&m, &n, &nrhs, tmp_data, &m, presult, &nrr, s, &rcond, &rank, work, &lwork, &info); Matrix retval (n, nrhs); for (j = 0; j < nrhs; j++) for (i = 0; i < n; i++) retval.elem (i, j) = result.elem (i, j); delete [] tmp_data; delete [] s; delete [] work; return retval; } ComplexMatrix Matrix::lssolve (const ComplexMatrix& b) const { ComplexMatrix tmp (*this); return tmp.lssolve (b); } ComplexMatrix Matrix::lssolve (const ComplexMatrix& b, int& info) const { ComplexMatrix tmp (*this); return tmp.lssolve (b, info); } ComplexMatrix Matrix::lssolve (const ComplexMatrix& b, int& info, int& rank) const { ComplexMatrix tmp (*this); return tmp.lssolve (b, info, rank); } ColumnVector Matrix::lssolve (const ColumnVector& b) const { int info; int rank; return lssolve (b, info, rank); } ColumnVector Matrix::lssolve (const ColumnVector& b, int& info) const { int rank; return lssolve (b, info, rank); } ColumnVector Matrix::lssolve (const ColumnVector& b, int& info, int& rank) const { int nrhs = 1; int m = nr; int n = nc; if (m == 0 || n == 0 || m != b.len) FAIL; double *tmp_data = dup (data, len); int nrr = m > n ? m : n; ColumnVector result (nrr); int i; for (i = 0; i < m; i++) result.elem (i) = b.elem (i); double *presult = result.fortran_vec (); int len_s = m < n ? m : n; double *s = new double [len_s]; double rcond = -1.0; int lwork; if (m < n) lwork = 3*m + (2*m > nrhs ? (2*m > n ? 2*m : n) : (nrhs > n ? nrhs : n)); else lwork = 3*n + (2*n > nrhs ? (2*n > m ? 2*n : m) : (nrhs > m ? nrhs : m)); double *work = new double [lwork]; F77_FCN (dgelss) (&m, &n, &nrhs, tmp_data, &m, presult, &nrr, s, &rcond, &rank, work, &lwork, &info); ColumnVector retval (n); for (i = 0; i < n; i++) retval.elem (i) = result.elem (i); delete [] tmp_data; delete [] s; delete [] work; return retval; } ComplexColumnVector Matrix::lssolve (const ComplexColumnVector& b) const { ComplexMatrix tmp (*this); return tmp.lssolve (b); } ComplexColumnVector Matrix::lssolve (const ComplexColumnVector& b, int& info) const { ComplexMatrix tmp (*this); return tmp.lssolve (b, info); } ComplexColumnVector Matrix::lssolve (const ComplexColumnVector& b, int& info, int& rank) const { ComplexMatrix tmp (*this); return tmp.lssolve (b, info, rank); } // matrix by scalar -> matrix operations. Matrix Matrix::operator + (double s) const { return Matrix (add (data, len, s), nr, nc); } Matrix Matrix::operator - (double s) const { return Matrix (subtract (data, len, s), nr, nc); } Matrix Matrix::operator * (double s) const { return Matrix (multiply (data, len, s), nr, nc); } Matrix Matrix::operator / (double s) const { return Matrix (divide (data, len, s), nr, nc); } ComplexMatrix Matrix::operator + (Complex s) const { return ComplexMatrix (add (data, len, s), nr, nc); } ComplexMatrix Matrix::operator - (Complex s) const { return ComplexMatrix (subtract (data, len, s), nr, nc); } ComplexMatrix Matrix::operator * (Complex s) const { return ComplexMatrix (multiply (data, len, s), nr, nc); } ComplexMatrix Matrix::operator / (Complex s) const { return ComplexMatrix (divide (data, len, s), nr, nc); } // scalar by matrix -> matrix operations Matrix operator + (double s, const Matrix& a) { return Matrix (add (a.data, a.len, s), a.nr, a.nc); } Matrix operator - (double s, const Matrix& a) { return Matrix (subtract (s, a.data, a.len), a.nr, a.nc); } Matrix operator * (double s, const Matrix& a) { return Matrix (multiply (a.data, a.len, s), a.nr, a.nc); } Matrix operator / (double s, const Matrix& a) { return Matrix (divide (s, a.data, a.len), a.nr, a.nc); } // matrix by column vector -> column vector operations ColumnVector Matrix::operator * (const ColumnVector& a) const { if (nc != a.len) FAIL; if (nr == 0 || nc == 0) return ColumnVector (0); char trans = 'N'; int ld = nr; double alpha = 1.0; double beta = 0.0; int i_one = 1; double *y = new double [a.len]; F77_FCN (dgemv) (&trans, &nr, &nc, &alpha, data, &ld, a.data, &i_one, &beta, y, &i_one, 1L); return ColumnVector (y, a.len); } ComplexColumnVector Matrix::operator * (const ComplexColumnVector& a) const { ComplexMatrix tmp (*this); return tmp * a; } // matrix by diagonal matrix -> matrix operations Matrix Matrix::operator + (const DiagMatrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return Matrix (nr, nc); Matrix result (*this); for (int i = 0; i < a.len; i++) result.elem (i, i) += a.data[i]; return result; } Matrix Matrix::operator - (const DiagMatrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return Matrix (nr, nc); Matrix result (*this); for (int i = 0; i < a.len; i++) result.elem (i, i) -= a.data[i]; return result; } Matrix Matrix::operator * (const DiagMatrix& a) const { if (nc != a.nr) FAIL; if (nr == 0 || nc == 0 || a.nc == 0) return Matrix (nr, a.nc, 0.0); double *c = new double [nr*a.nc]; double *ctmp = (double *) NULL; for (int j = 0; j < a.len; j++) { int idx = j * nr; ctmp = c + idx; if (a.data[j] == 1.0) { for (int i = 0; i < nr; i++) ctmp[i] = elem (i, j); } else if (a.data[j] == 0.0) { for (int i = 0; i < nr; i++) ctmp[i] = 0.0; } else { for (int i = 0; i < nr; i++) ctmp[i] = a.data[j] * elem (i, j); } } if (a.nr < a.nc) { for (int i = nr * nc; i < nr * a.nc; i++) ctmp[i] = 0.0; } return Matrix (c, nr, a.nc); } ComplexMatrix Matrix::operator + (const ComplexDiagMatrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); ComplexMatrix result (*this); for (int i = 0; i < a.len; i++) result.elem (i, i) += a.data[i]; return result; } ComplexMatrix Matrix::operator - (const ComplexDiagMatrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); ComplexMatrix result (*this); for (int i = 0; i < a.len; i++) result.elem (i, i) -= a.data[i]; return result; } ComplexMatrix Matrix::operator * (const ComplexDiagMatrix& a) const { if (nc != a.nr) FAIL; if (nr == 0 || nc == 0 || a.nc == 0) return ComplexMatrix (nr, a.nc, 0.0); Complex *c = new Complex [nr*a.nc]; Complex *ctmp = (Complex *) NULL; for (int j = 0; j < a.len; j++) { int idx = j * nr; ctmp = c + idx; if (a.data[j] == 1.0) { for (int i = 0; i < nr; i++) ctmp[i] = elem (i, j); } else if (a.data[j] == 0.0) { for (int i = 0; i < nr; i++) ctmp[i] = 0.0; } else { for (int i = 0; i < nr; i++) ctmp[i] = a.data[j] * elem (i, j); } } if (a.nr < a.nc) { for (int i = nr * nc; i < nr * a.nc; i++) ctmp[i] = 0.0; } return ComplexMatrix (c, nr, a.nc); } Matrix& Matrix::operator += (const DiagMatrix& a) { if (nr != a.nr || nc != a.nc) FAIL; for (int i = 0; i < a.len; i++) elem (i, i) += a.data[i]; return *this; } Matrix& Matrix::operator -= (const DiagMatrix& a) { if (nr != a.nr || nc != a.nc) FAIL; for (int i = 0; i < a.len; i++) elem (i, i) -= a.data[i]; return *this; } // matrix by matrix -> matrix operations Matrix Matrix::operator + (const Matrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return Matrix (nr, nc); return Matrix (add (data, a.data, len), nr, nc); } Matrix Matrix::operator - (const Matrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return Matrix (nr, nc); return Matrix (subtract (data, a.data, len), nr, nc); } Matrix Matrix::operator * (const Matrix& a) const { if (nc != a.nr) FAIL; if (nr == 0 || nc == 0 || a.nc == 0) return Matrix (nr, a.nc, 0.0); char trans = 'N'; char transa = 'N'; int ld = nr; int lda = a.nr; double alpha = 1.0; double beta = 0.0; int anc = a.nc; double *c = new double [nr*a.nc]; F77_FCN (dgemm) (&trans, &transa, &nr, &anc, &nc, &alpha, data, &ld, a.data, &lda, &beta, c, &nr, 1L, 1L); return Matrix (c, nr, a.nc); } ComplexMatrix Matrix::operator + (const ComplexMatrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; return ComplexMatrix (add (data, a.data, len), nr, nc); } ComplexMatrix Matrix::operator - (const ComplexMatrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); return ComplexMatrix (subtract (data, a.data, len), nr, nc); } ComplexMatrix Matrix::operator * (const ComplexMatrix& a) const { ComplexMatrix tmp (*this); return tmp * a; } Matrix Matrix::product (const Matrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return Matrix (nr, nc); return Matrix (multiply (data, a.data, len), nr, nc); } Matrix Matrix::quotient (const Matrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return Matrix (nr, nc); return Matrix (divide (data, a.data, len), nr, nc); } ComplexMatrix Matrix::product (const ComplexMatrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); return ComplexMatrix (multiply (data, a.data, len), nr, nc); } ComplexMatrix Matrix::quotient (const ComplexMatrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); return ComplexMatrix (divide (data, a.data, len), nr, nc); } Matrix& Matrix::operator += (const Matrix& a) { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return *this; add2 (data, a.data, len); return *this; } Matrix& Matrix::operator -= (const Matrix& a) { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return *this; subtract2 (data, a.data, len); return *this; } // other operations. Matrix map (d_d_Mapper f, const Matrix& a) { Matrix b (a); b.map (f); return b; } void Matrix::map (d_d_Mapper f) { for (int i = 0; i < len; i++) data[i] = f (data[i]); } // XXX FIXME XXX Do these really belong here? They should maybe be // cleaned up a bit, no? What about corresponding functions for the // Vectors? Matrix Matrix::all (void) const { Matrix retval; if (nr > 0 && nc > 0) { if (nr == 1) { retval.resize (1, 1); retval.elem (0, 0) = 1.0; for (int j = 0; j < nc; j++) { if (elem (0, j) == 0.0) { retval.elem (0, 0) = 0.0; break; } } } else if (nc == 1) { retval.resize (1, 1); retval.elem (0, 0) = 1.0; for (int i = 0; i < nr; i++) { if (elem (i, 0) == 0.0) { retval.elem (0, 0) = 0.0; break; } } } else { retval.resize (1, nc); for (int j = 0; j < nc; j++) { retval.elem (0, j) = 1.0; for (int i = 0; i < nr; i++) { if (elem (i, j) == 0.0) { retval.elem (0, j) = 0.0; break; } } } } } return retval; } Matrix Matrix::any (void) const { Matrix retval; if (nr > 0 && nc > 0) { if (nr == 1) { retval.resize (1, 1); retval.elem (0, 0) = 0.0; for (int j = 0; j < nc; j++) { if (elem (0, j) != 0.0) { retval.elem (0, 0) = 1.0; break; } } } else if (nc == 1) { retval.resize (1, 1); retval.elem (0, 0) = 0.0; for (int i = 0; i < nr; i++) { if (elem (i, 0) != 0.0) { retval.elem (0, 0) = 1.0; break; } } } else { retval.resize (1, nc); for (int j = 0; j < nc; j++) { retval.elem (0, j) = 0.0; for (int i = 0; i < nr; i++) { if (elem (i, j) != 0.0) { retval.elem (0, j) = 1.0; break; } } } } } return retval; } Matrix Matrix::cumprod (void) const { Matrix retval; if (nr == 1) { retval.resize (1, nc); if (nc > 0) { double prod = elem (0, 0); for (int j = 0; j < nc; j++) { retval.elem (0, j) = prod; if (j < nc - 1) prod *= elem (0, j+1); } } } else if (nc == 1) { retval.resize (nr, 1); if (nr > 0) { double prod = elem (0, 0); for (int i = 0; i < nr; i++) { retval.elem (i, 0) = prod; if (i < nr - 1) prod *= elem (i+1, 0); } } } else { retval.resize (nr, nc); if (nr > 0 && nc > 0) { for (int j = 0; j < nc; j++) { double prod = elem (0, j); for (int i = 0; i < nr; i++) { retval.elem (i, j) = prod; if (i < nr - 1) prod *= elem (i+1, j); } } } } return retval; } Matrix Matrix::cumsum (void) const { Matrix retval; if (nr == 1) { retval.resize (1, nc); if (nc > 0) { double sum = elem (0, 0); for (int j = 0; j < nc; j++) { retval.elem (0, j) = sum; if (j < nc - 1) sum += elem (0, j+1); } } } else if (nc == 1) { retval.resize (nr, 1); if (nr > 0) { double sum = elem (0, 0); for (int i = 0; i < nr; i++) { retval.elem (i, 0) = sum; if (i < nr - 1) sum += elem (i+1, 0); } } } else { retval.resize (nr, nc); if (nr > 0 && nc > 0) { for (int j = 0; j < nc; j++) { double sum = elem (0, j); for (int i = 0; i < nr; i++) { retval.elem (i, j) = sum; if (i < nr - 1) sum += elem (i+1, j); } } } } return retval; } Matrix Matrix::prod (void) const { Matrix retval; if (nr == 1) { retval.resize (1, 1); retval.elem (0, 0) = 1.0; for (int j = 0; j < nc; j++) retval.elem (0, 0) *= elem (0, j); } else if (nc == 1) { retval.resize (1, 1); retval.elem (0, 0) = 1.0; for (int i = 0; i < nr; i++) retval.elem (0, 0) *= elem (i, 0); } else { if (nc == 0) { retval.resize (1, 1); retval.elem (0, 0) = 1.0; } else retval.resize (1, nc); for (int j = 0; j < nc; j++) { retval.elem (0, j) = 1.0; for (int i = 0; i < nr; i++) retval.elem (0, j) *= elem (i, j); } } return retval; } Matrix Matrix::sum (void) const { Matrix retval; if (nr == 1) { retval.resize (1, 1); retval.elem (0, 0) = 0.0; for (int j = 0; j < nc; j++) retval.elem (0, 0) += elem (0, j); } else if (nc == 1) { retval.resize (1, 1); retval.elem (0, 0) = 0.0; for (int i = 0; i < nr; i++) retval.elem (0, 0) += elem (i, 0); } else { if (nc == 0) { retval.resize (1, 1); retval.elem (0, 0) = 0.0; } else retval.resize (1, nc); for (int j = 0; j < nc; j++) { retval.elem (0, j) = 0.0; for (int i = 0; i < nr; i++) retval.elem (0, j) += elem (i, j); } } return retval; } Matrix Matrix::sumsq (void) const { Matrix retval; if (nr == 1) { retval.resize (1, 1); retval.elem (0, 0) = 0.0; for (int j = 0; j < nc; j++) { double d = elem (0, j); retval.elem (0, 0) += d * d; } } else if (nc == 1) { retval.resize (1, 1); retval.elem (0, 0) = 0.0; for (int i = 0; i < nr; i++) { double d = elem (i, 0); retval.elem (0, 0) += d * d; } } else { retval.resize (1, nc); for (int j = 0; j < nc; j++) { retval.elem (0, j) = 0.0; for (int i = 0; i < nr; i++) { double d = elem (i, j); retval.elem (0, j) += d * d; } } } return retval; } ColumnVector Matrix::diag (void) const { return diag (0); } ColumnVector Matrix::diag (int k) const { int nnr = nr; int nnc = nc; if (k > 0) nnc -= k; else if (k < 0) nnr += k; ColumnVector d; if (nnr > 0 && nnc > 0) { int ndiag = (nnr < nnc) ? nnr : nnc; d.resize (ndiag); if (k > 0) { for (int i = 0; i < ndiag; i++) d.elem (i) = elem (i, i+k); } else if ( k < 0) { for (int i = 0; i < ndiag; i++) d.elem (i) = elem (i-k, i); } else { for (int i = 0; i < ndiag; i++) d.elem (i) = elem (i, i); } } else cerr << "diag: requested diagonal out of range\n"; return d; } // unary operations Matrix Matrix::operator - (void) const { return Matrix (negate (data, len), nr, nc); } Matrix Matrix::operator ! (void) const { Matrix b (nr, nc); for (int j = 0; j < nc; j++) for (int i = 0; i < nr; i++) b.elem (i, j) = ! elem (i, j); return b; } ColumnVector Matrix::row_min (void) const { ColumnVector result; if (nr > 0 && nc > 0) { result.resize (nr); for (int i = 0; i < nr; i++) { double res = elem (i, 0); for (int j = 1; j < nc; j++) if (elem (i, j) < res) res = elem (i, j); result.elem (i) = res; } } return result; } ColumnVector Matrix::row_max (void) const { ColumnVector result; if (nr > 0 && nc > 0) { result.resize (nr); for (int i = 0; i < nr; i++) { double res = elem (i, 0); for (int j = 1; j < nc; j++) if (elem (i, j) > res) res = elem (i, j); result.elem (i) = res; } } return result; } RowVector Matrix::column_min (void) const { RowVector result; if (nr > 0 && nc > 0) { result.resize (nc); for (int j = 0; j < nc; j++) { double res = elem (0, j); for (int i = 1; i < nr; i++) if (elem (i, j) < res) res = elem (i, j); result.elem (j) = res; } } return result; } RowVector Matrix::column_max (void) const { RowVector result; if (nr > 0 && nc > 0) { result.resize (nc); for (int j = 0; j < nc; j++) { double res = elem (0, j); for (int i = 1; i < nr; i++) if (elem (i, j) > res) res = elem (i, j); result.elem (j) = res; } } return result; } ostream& operator << (ostream& os, const Matrix& a) { // int field_width = os.precision () + 7; for (int i = 0; i < a.nr; i++) { for (int j = 0; j < a.nc; j++) os << " " /* setw (field_width) */ << a.elem (i, j); os << "\n"; } return os; } istream& operator >> (istream& is, Matrix& a) { int nr = a.rows (); int nc = a.columns (); if (nr < 1 || nc < 1) is.clear (ios::badbit); else { double tmp; for (int i = 0; i < nr; i++) for (int j = 0; j < nc; j++) { is >> tmp; if (is) a.elem (i, j) = tmp; else break; } } return is; } /* * Complex Matrix class */ ComplexMatrix::ComplexMatrix (int r, int c) { if (r < 0 || c < 0) FAIL; nr = r; nc = c; len = nr * nc; if (len > 0) data = new Complex [len]; else data = (Complex *) NULL; } ComplexMatrix::ComplexMatrix (int r, int c, double val) { if (r < 0 || c < 0) FAIL; nr = r; nc = c; len = nr * nc; if (len > 0) { data = new Complex [len]; copy (data, len, val); } else data = (Complex *) NULL; } ComplexMatrix::ComplexMatrix (int r, int c, Complex val) { if (r < 0 || c < 0) FAIL; nr = r; nc = c; len = nr * nc; if (len > 0) { data = new Complex [len]; copy (data, len, val); } else data = (Complex *) NULL; } ComplexMatrix::ComplexMatrix (const Matrix& a) { nr = a.nr; nc = a.nc; len = a.len; if (len > 0) { data = new Complex [len]; copy (data, a.data, len); } else data = (Complex *) NULL; } ComplexMatrix::ComplexMatrix (const ComplexMatrix& a) { nr = a.nr; nc = a.nc; len = a.len; if (len > 0) { data = new Complex [len]; copy (data, a.data, len); } else data = (Complex *) NULL; } ComplexMatrix::ComplexMatrix (const DiagMatrix& a) { nr = a.nr; nc = a.nc; len = nr * nc; if (len > 0) { data = new Complex [len]; copy (data, len, 0.0); for (int i = 0; i < a.len; i++) data[nr*i+i] = a.data[i]; } else data = (Complex *) NULL; } ComplexMatrix::ComplexMatrix (const ComplexDiagMatrix& a) { nr = a.nr; nc = a.nc; len = nr * nc; if (len > 0) { data = new Complex [len]; copy (data, len, 0.0); for (int i = 0; i < a.len; i++) data[nr*i+i] = a.data[i]; } else data = (Complex *) NULL; } ComplexMatrix::ComplexMatrix (double a) { nr = 1; nc = 1; len = 1; data = new Complex [1]; data[0] = a; } ComplexMatrix::ComplexMatrix (Complex a) { nr = 1; nc = 1; len = 1; data = new Complex [1]; data[0] = Complex (a); } ComplexMatrix& ComplexMatrix::operator = (const Matrix& a) { delete [] data; nr = a.nr; nc = a.nc; len = a.len; if (len > 0) { data = new Complex [len]; copy (data, a.data, len); } else data = (Complex *) NULL; return *this; } ComplexMatrix& ComplexMatrix::operator = (const ComplexMatrix& a) { if (this != &a) { delete [] data; nr = a.nr; nc = a.nc; len = a.len; if (len > 0) { data = new Complex [len]; copy (data, a.data, len); } else data = (Complex *) NULL; } return *this; } ComplexMatrix& ComplexMatrix::resize (int r, int c) { if (r < 0 || c < 0) FAIL; int new_len = r * c; Complex* new_data = (Complex *) NULL; if (new_len > 0) { new_data = new Complex [new_len]; int min_r = nr < r ? nr : r; int min_c = nc < c ? nc : c; for (int j = 0; j < min_c; j++) for (int i = 0; i < min_r; i++) new_data[r*j+i] = elem (i, j); } delete [] data; nr = r; nc = c; len = new_len; data = new_data; return *this; } ComplexMatrix& ComplexMatrix::resize (int r, int c, double val) { if (r < 0 || c < 0) FAIL; int new_len = r * c; Complex *new_data = (Complex *) NULL; if (new_len > 0) { new_data = new Complex [new_len]; // There may be faster or cleaner ways to do this. if (r > nr || c > nc) copy (new_data, new_len, val); int min_r = nr < r ? nr : r; int min_c = nc < c ? nc : c; for (int j = 0; j < min_c; j++) for (int i = 0; i < min_r; i++) new_data[r*j+i] = elem (i, j); } delete [] data; nr = r; nc = c; len = new_len; data = new_data; return *this; } ComplexMatrix& ComplexMatrix::resize (int r, int c, Complex val) { if (r < 0 || c < 0) FAIL; int new_len = r * c; Complex *new_data = (Complex *) NULL; if (new_len > 0) { new_data = new Complex [new_len]; // There may be faster or cleaner ways to do this. if (r > nr || c > nc) copy (new_data, new_len, val); int min_r = nr < r ? nr : r; int min_c = nc < c ? nc : c; for (int j = 0; j < min_c; j++) for (int i = 0; i < min_r; i++) new_data[r*j+i] = elem (i, j); } delete [] data; nr = r; nc = c; len = new_len; data = new_data; return *this; } int ComplexMatrix::operator == (const ComplexMatrix& a) const { if (nr != a.nr || nc != a.nc) return 0; return equal (data, a.data, len); } int ComplexMatrix::operator != (const ComplexMatrix& a) const { return !(*this == a); } // destructive insert/delete/reorder operations ComplexMatrix& ComplexMatrix::insert (const Matrix& a, int r, int c) { if (r < 0 || r + a.nr - 1 > nr || c < 0 || c + a.nc - 1 > nc) FAIL; for (int j = 0; j < a.nc; j++) for (int i = 0; i < a.nr; i++) elem (r+i, c+j) = a.elem (i, j); return *this; } ComplexMatrix& ComplexMatrix::insert (const RowVector& a, int r, int c) { if (r < 0 || r >= nr || c < 0 || c + a.len - 1 > nc) FAIL; for (int i = 0; i < a.len; i++) elem (r, c+i) = a.data[i]; return *this; } ComplexMatrix& ComplexMatrix::insert (const ColumnVector& a, int r, int c) { if (r < 0 || r + a.len - 1 > nr || c < 0 || c >= nc) FAIL; for (int i = 0; i < a.len; i++) elem (r+i, c) = a.data[i]; return *this; } ComplexMatrix& ComplexMatrix::insert (const DiagMatrix& a, int r, int c) { if (r < 0 || r + a.nr - 1 > nr || c < 0 || c + a.nc - 1 > nc) FAIL; for (int i = 0; i < a.len; i++) elem (r+i, c+i) = a.data[i]; return *this; } ComplexMatrix& ComplexMatrix::insert (const ComplexMatrix& a, int r, int c) { if (r < 0 || r + a.nr - 1 > nr || c < 0 || c + a.nc - 1 > nc) FAIL; for (int j = 0; j < a.nc; j++) for (int i = 0; i < a.nr; i++) elem (r+i, c+j) = a.elem (i, j); return *this; } ComplexMatrix& ComplexMatrix::insert (const ComplexRowVector& a, int r, int c) { if (r < 0 || r >= nr || c < 0 || c + a.len - 1 > nc) FAIL; for (int i = 0; i < a.len; i++) elem (r, c+i) = a.data[i]; return *this; } ComplexMatrix& ComplexMatrix::insert (const ComplexColumnVector& a, int r, int c) { if (r < 0 || r + a.len - 1 > nr || c < 0 || c >= nc) FAIL; for (int i = 0; i < a.len; i++) elem (r+i, c) = a.data[i]; return *this; } ComplexMatrix& ComplexMatrix::insert (const ComplexDiagMatrix& a, int r, int c) { if (r < 0 || r + a.nr - 1 > nr || c < 0 || c + a.nc - 1 > nc) FAIL; for (int i = 0; i < a.len; i++) elem (r+i, c+i) = a.data[i]; return *this; } ComplexMatrix& ComplexMatrix::fill (double val) { if (nr > 0 && nc > 0) copy (data, len, val); return *this; } ComplexMatrix& ComplexMatrix::fill (Complex val) { if (nr > 0 && nc > 0) copy (data, len, val); return *this; } ComplexMatrix& ComplexMatrix::fill (double val, int r1, int c1, int r2, int c2) { if (r1 < 0 || r2 < 0 || c1 < 0 || c2 < 0 || r1 >= nr || r2 >= nr || c1 >= nc || c2 >= nc) FAIL; if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } for (int j = c1; j <= c2; j++) for (int i = r1; i <= r2; i++) elem (i, j) = val; return *this; } ComplexMatrix& ComplexMatrix::fill (Complex val, int r1, int c1, int r2, int c2) { if (r1 < 0 || r2 < 0 || c1 < 0 || c2 < 0 || r1 >= nr || r2 >= nr || c1 >= nc || c2 >= nc) FAIL; if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } for (int j = c1; j <= c2; j++) for (int i = r1; i <= r2; i++) elem (i, j) = val; return *this; } ComplexMatrix ComplexMatrix::append (const Matrix& a) const { if (nr != a.nr) FAIL; int nc_insert = nc; ComplexMatrix retval (nr, nc + a.nc); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } ComplexMatrix ComplexMatrix::append (const RowVector& a) const { if (nr != 1) FAIL; int nc_insert = nc; ComplexMatrix retval (nr, nc + a.len); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } ComplexMatrix ComplexMatrix::append (const ColumnVector& a) const { if (nr != a.len) FAIL; int nc_insert = nc; ComplexMatrix retval (nr, nc + 1); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } ComplexMatrix ComplexMatrix::append (const DiagMatrix& a) const { if (nr != a.nr) FAIL; int nc_insert = nc; ComplexMatrix retval (nr, nc + a.nc); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } ComplexMatrix ComplexMatrix::append (const ComplexMatrix& a) const { if (nr != a.nr) FAIL; int nc_insert = nc; ComplexMatrix retval (nr, nc + a.nc); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } ComplexMatrix ComplexMatrix::append (const ComplexRowVector& a) const { if (nr != 1) FAIL; int nc_insert = nc; ComplexMatrix retval (nr, nc + a.len); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } ComplexMatrix ComplexMatrix::append (const ComplexColumnVector& a) const { if (nr != a.len) FAIL; int nc_insert = nc; ComplexMatrix retval (nr, nc + 1); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } ComplexMatrix ComplexMatrix::append (const ComplexDiagMatrix& a) const { if (nr != a.nr) FAIL; int nc_insert = nc; ComplexMatrix retval (nr, nc + a.nc); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } ComplexMatrix ComplexMatrix::stack (const Matrix& a) const { if (nc != a.nc) FAIL; int nr_insert = nr; ComplexMatrix retval (nr + a.nr, nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } ComplexMatrix ComplexMatrix::stack (const RowVector& a) const { if (nc != a.len) FAIL; int nr_insert = nr; ComplexMatrix retval (nr + 1, nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } ComplexMatrix ComplexMatrix::stack (const ColumnVector& a) const { if (nc != 1) FAIL; int nr_insert = nr; ComplexMatrix retval (nr + a.len, nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } ComplexMatrix ComplexMatrix::stack (const DiagMatrix& a) const { if (nc != a.nc) FAIL; int nr_insert = nr; ComplexMatrix retval (nr + a.nr, nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } ComplexMatrix ComplexMatrix::stack (const ComplexMatrix& a) const { if (nc != a.nc) FAIL; int nr_insert = nr; ComplexMatrix retval (nr + a.nr, nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } ComplexMatrix ComplexMatrix::stack (const ComplexRowVector& a) const { if (nc != a.len) FAIL; int nr_insert = nr; ComplexMatrix retval (nr + 1, nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } ComplexMatrix ComplexMatrix::stack (const ComplexColumnVector& a) const { if (nc != 1) FAIL; int nr_insert = nr; ComplexMatrix retval (nr + a.len, nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } ComplexMatrix ComplexMatrix::stack (const ComplexDiagMatrix& a) const { if (nc != a.nc) FAIL; int nr_insert = nr; ComplexMatrix retval (nr + a.nr, nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } ComplexMatrix ComplexMatrix::hermitian (void) const { ComplexMatrix result; if (len > 0) { result.resize (nc, nr); for (int j = 0; j < nc; j++) for (int i = 0; i < nr; i++) result.data[nc*i+j] = conj (data[nr*j+i]); } return result; } ComplexMatrix ComplexMatrix::transpose (void) const { ComplexMatrix result; if (len > 0) { result.resize (nc, nr); for (int j = 0; j < nc; j++) for (int i = 0; i < nr; i++) result.data[nc*i+j] = data[nr*j+i]; } return result; } Matrix real (const ComplexMatrix& a) { Matrix retval; if (a.len > 0) retval = Matrix (real_dup (a.data, a.len), a.nr, a.nc); return retval; } Matrix imag (const ComplexMatrix& a) { Matrix retval; if (a.len > 0) retval = Matrix (imag_dup (a.data, a.len), a.nr, a.nc); return retval; } ComplexMatrix conj (const ComplexMatrix& a) { ComplexMatrix retval; if (a.len > 0) retval = ComplexMatrix (conj_dup (a.data, a.len), a.nr, a.nc); return retval; } // resize is the destructive equivalent for this one ComplexMatrix ComplexMatrix::extract (int r1, int c1, int r2, int c2) const { if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } int new_r = r2 - r1 + 1; int new_c = c2 - c1 + 1; ComplexMatrix result (new_r, new_c); for (int j = 0; j < new_c; j++) for (int i = 0; i < new_r; i++) result.data[new_r*j+i] = elem (r1+i, c1+j); return result; } // extract row or column i. ComplexRowVector ComplexMatrix::row (int i) const { if (i < 0 || i >= nr) FAIL; ComplexRowVector retval (nc); for (int j = 0; j < nc; j++) retval.elem (j) = elem (i, j); return retval; } ComplexRowVector ComplexMatrix::row (char *s) const { if (s == (char *) NULL) FAIL; char c = *s; if (c == 'f' || c == 'F') return row (0); else if (c == 'l' || c == 'L') return row (nr - 1); else FAIL; } ComplexColumnVector ComplexMatrix::column (int i) const { if (i < 0 || i >= nc) FAIL; ComplexColumnVector retval (nr); for (int j = 0; j < nr; j++) retval.elem (j) = elem (j, i); return retval; } ComplexColumnVector ComplexMatrix::column (char *s) const { if (s == (char *) NULL) FAIL; char c = *s; if (c == 'f' || c == 'F') return column (0); else if (c == 'l' || c == 'L') return column (nc - 1); else FAIL; } ComplexMatrix ComplexMatrix::inverse (int& info, double& rcond) const { if (nr != nc) FAIL; info = 0; int *ipvt = new int [nr]; Complex *z = new Complex [nr]; Complex *tmp_data = dup (data, len); F77_FCN (zgeco) (tmp_data, &nr, &nc, ipvt, &rcond, z); if (rcond + 1.0 == 1.0) { info = -1; copy (tmp_data, data, len); // Restore contents. } else { int job = 1; Complex dummy; F77_FCN (zgedi) (tmp_data, &nr, &nc, ipvt, &dummy, z, &job); } delete [] ipvt; delete [] z; return ComplexMatrix (tmp_data, nr, nc); } ComplexMatrix ComplexMatrix::inverse (int& info) const { double rcond; return inverse (info, rcond); } ComplexMatrix ComplexMatrix::inverse (void) const { int info; double rcond; return inverse (info, rcond); } ComplexMatrix ComplexMatrix::fourier (void) const { int npts, nsamples; if (nr == 1 || nc == 1) { npts = nr > nc ? nr : nc; nsamples = 1; } else { npts = nr; nsamples = nc; } int nn = 4*npts+15; Complex *wsave = new Complex [nn]; Complex *tmp_data = dup (data, len); F77_FCN (cffti) (&npts, wsave); for (int j = 0; j < nsamples; j++) F77_FCN (cfftf) (&npts, &tmp_data[npts*j], wsave); delete [] wsave; return ComplexMatrix (tmp_data, nr, nc); } ComplexMatrix ComplexMatrix::ifourier (void) const { int npts, nsamples; if (nr == 1 || nc == 1) { npts = nr > nc ? nr : nc; nsamples = 1; } else { npts = nr; nsamples = nc; } int nn = 4*npts+15; Complex *wsave = new Complex [nn]; Complex *tmp_data = dup (data, len); F77_FCN (cffti) (&npts, wsave); for (int j = 0; j < nsamples; j++) F77_FCN (cfftb) (&npts, &tmp_data[npts*j], wsave); for (j = 0; j < npts*nsamples; j++) tmp_data[j] = tmp_data[j] / (double) npts; delete [] wsave; return ComplexMatrix (tmp_data, nr, nc); } ComplexDET ComplexMatrix::determinant (void) const { int info; double rcond; return determinant (info, rcond); } ComplexDET ComplexMatrix::determinant (int& info) const { double rcond; return determinant (info, rcond); } ComplexDET ComplexMatrix::determinant (int& info, double& rcond) const { ComplexDET retval; if (nr == 0 || nc == 0) { Complex d[2]; d[0] = 1.0; d[1] = 0.0; return ComplexDET (d); } info = 0; int *ipvt = new int [nr]; Complex *z = new Complex [nr]; Complex *tmp_data = dup (data, len); F77_FCN (zgeco) (tmp_data, &nr, &nr, ipvt, &rcond, z); if (rcond + 1.0 == 1.0) { info = -1; } else { int job = 10; Complex d[2]; F77_FCN (zgedi) (tmp_data, &nr, &nr, ipvt, d, z, &job); retval = ComplexDET (d); } delete [] tmp_data; delete [] ipvt; delete [] z; return retval; } ComplexMatrix ComplexMatrix::solve (const Matrix& b) const { int info; double rcond; return solve (b, info, rcond); } ComplexMatrix ComplexMatrix::solve (const Matrix& b, int& info) const { double rcond; return solve (b, info, rcond); } ComplexMatrix ComplexMatrix::solve (const Matrix& b, int& info, double& rcond) const { ComplexMatrix tmp (b); return solve (tmp, info, rcond); } ComplexMatrix ComplexMatrix::solve (const ComplexMatrix& b) const { int info; double rcond; return solve (b, info, rcond); } ComplexMatrix ComplexMatrix::solve (const ComplexMatrix& b, int& info) const { double rcond; return solve (b, info, rcond); } ComplexMatrix ComplexMatrix::solve (const ComplexMatrix& b, int& info, double& rcond) const { ComplexMatrix retval; if (nr == 0 || nc == 0 || nr != nc || nr != b.nr) FAIL; info = 0; int *ipvt = new int [nr]; Complex *z = new Complex [nr]; Complex *tmp_data = dup (data, len); F77_FCN (zgeco) (tmp_data, &nr, &nr, ipvt, &rcond, z); if (rcond + 1.0 == 1.0) { info = -2; } else { int job = 0; Complex *result = dup (b.data, b.len); for (int j = 0; j < b.nc; j++) F77_FCN (zgesl) (tmp_data, &nr, &nr, ipvt, &result[nr*j], &job); retval = ComplexMatrix (result, b.nr, b.nc); } delete [] tmp_data; delete [] ipvt; delete [] z; return retval; } ComplexColumnVector ComplexMatrix::solve (const ColumnVector& b) const { int info; double rcond; return solve (b, info, rcond); } ComplexColumnVector ComplexMatrix::solve (const ColumnVector& b, int& info) const { double rcond; return solve (b, info, rcond); } ComplexColumnVector ComplexMatrix::solve (const ColumnVector& b, int& info, double& rcond) const { ComplexColumnVector tmp (b); return solve (tmp, info, rcond); } ComplexColumnVector ComplexMatrix::solve (const ComplexColumnVector& b) const { int info; double rcond; return solve (b, info, rcond); } ComplexColumnVector ComplexMatrix::solve (const ComplexColumnVector& b, int& info) const { double rcond; return solve (b, info, rcond); } ComplexColumnVector ComplexMatrix::solve (const ComplexColumnVector& b, int& info, double& rcond) const { ComplexColumnVector retval; if (nr == 0 || nc == 0 || nr != nc || nr != b.len) FAIL; info = 0; int *ipvt = new int [nr]; Complex *z = new Complex [nr]; Complex *tmp_data = dup (data, len); F77_FCN (zgeco) (tmp_data, &nr, &nr, ipvt, &rcond, z); if (rcond + 1.0 == 1.0) { info = -2; } else { int job = 0; Complex *result = dup (b.data, b.len); F77_FCN (zgesl) (tmp_data, &nr, &nr, ipvt, result, &job); retval = ComplexColumnVector (result, b.len); } delete [] tmp_data; delete [] ipvt; delete [] z; return retval; } ComplexMatrix ComplexMatrix::lssolve (const Matrix& b) const { int info; int rank; return lssolve (b, info, rank); } ComplexMatrix ComplexMatrix::lssolve (const Matrix& b, int& info) const { int rank; return lssolve (b, info, rank); } ComplexMatrix ComplexMatrix::lssolve (const Matrix& b, int& info, int& rank) const { ComplexMatrix tmp (b); return lssolve (tmp, info, rank); } ComplexMatrix ComplexMatrix::lssolve (const ComplexMatrix& b) const { int info; int rank; return lssolve (b, info, rank); } ComplexMatrix ComplexMatrix::lssolve (const ComplexMatrix& b, int& info) const { int rank; return lssolve (b, info, rank); } ComplexMatrix ComplexMatrix::lssolve (const ComplexMatrix& b, int& info, int& rank) const { int nrhs = b.nc; int m = nr; int n = nc; if (m == 0 || n == 0 || m != b.nr) FAIL; Complex *tmp_data = dup (data, len); int nrr = m > n ? m : n; ComplexMatrix result (nrr, nrhs); int i, j; for (j = 0; j < nrhs; j++) for (i = 0; i < m; i++) result.elem (i, j) = b.elem (i, j); Complex *presult = result.fortran_vec (); int len_s = m < n ? m : n; double *s = new double [len_s]; double rcond = -1.0; int lwork; if (m < n) lwork = 2*m + (nrhs > n ? nrhs : n); else lwork = 2*n + (nrhs > m ? nrhs : m); Complex *work = new Complex [lwork]; int lrwork = (5 * (m < n ? m : n)) - 4; lrwork = lrwork > 1 ? lrwork : 1; double *rwork = new double [lrwork]; F77_FCN (zgelss) (&m, &n, &nrhs, tmp_data, &m, presult, &nrr, s, &rcond, &rank, work, &lwork, rwork, &info); ComplexMatrix retval (n, nrhs); for (j = 0; j < nrhs; j++) for (i = 0; i < n; i++) retval.elem (i, j) = result.elem (i, j); delete [] tmp_data; delete [] s; delete [] work; delete [] rwork; return retval; } ComplexColumnVector ComplexMatrix::lssolve (const ColumnVector& b) const { int info; int rank; return lssolve (b, info, rank); } ComplexColumnVector ComplexMatrix::lssolve (const ColumnVector& b, int& info) const { int rank; return lssolve (b, info, rank); } ComplexColumnVector ComplexMatrix::lssolve (const ColumnVector& b, int& info, int& rank) const { ComplexColumnVector tmp (b); return lssolve (tmp, info, rank); } ComplexColumnVector ComplexMatrix::lssolve (const ComplexColumnVector& b) const { int info; int rank; return lssolve (b, info, rank); } ComplexColumnVector ComplexMatrix::lssolve (const ComplexColumnVector& b, int& info) const { int rank; return lssolve (b, info, rank); } ComplexColumnVector ComplexMatrix::lssolve (const ComplexColumnVector& b, int& info, int& rank) const { int nrhs = 1; int m = nr; int n = nc; if (m == 0 || n == 0 || m != b.len) FAIL; Complex *tmp_data = dup (data, len); int nrr = m > n ? m : n; ComplexColumnVector result (nrr); int i; for (i = 0; i < m; i++) result.elem (i) = b.elem (i); Complex *presult = result.fortran_vec (); int len_s = m < n ? m : n; double *s = new double [len_s]; double rcond = -1.0; int lwork; if (m < n) lwork = 2*m + (nrhs > n ? nrhs : n); else lwork = 2*n + (nrhs > m ? nrhs : m); Complex *work = new Complex [lwork]; int lrwork = (5 * (m < n ? m : n)) - 4; lrwork = lrwork > 1 ? lrwork : 1; double *rwork = new double [lrwork]; F77_FCN (zgelss) (&m, &n, &nrhs, tmp_data, &m, presult, &nrr, s, &rcond, &rank, work, &lwork, rwork, &info); ComplexColumnVector retval (n); for (i = 0; i < n; i++) retval.elem (i) = result.elem (i); delete [] tmp_data; delete [] s; delete [] work; delete [] rwork; return retval; } // matrix by scalar -> matrix operations ComplexMatrix ComplexMatrix::operator + (double s) const { return ComplexMatrix (add (data, len, s), nr, nc); } ComplexMatrix ComplexMatrix::operator - (double s) const { return ComplexMatrix (subtract (data, len, s), nr, nc); } ComplexMatrix ComplexMatrix::operator * (double s) const { return ComplexMatrix (multiply (data, len, s), nr, nc); } ComplexMatrix ComplexMatrix::operator / (double s) const { return ComplexMatrix (divide (data, len, s), nr, nc); } ComplexMatrix ComplexMatrix::operator + (Complex s) const { return ComplexMatrix (add (data, len, s), nr, nc); } ComplexMatrix ComplexMatrix::operator - (Complex s) const { return ComplexMatrix (subtract (data, len, s), nr, nc); } ComplexMatrix ComplexMatrix::operator * (Complex s) const { return ComplexMatrix (multiply (data, len, s), nr, nc); } ComplexMatrix ComplexMatrix::operator / (Complex s) const { return ComplexMatrix (divide (data, len, s), nr, nc); } // scalar by matrix -> matrix operations ComplexMatrix operator + (double s, const ComplexMatrix& a) { return ComplexMatrix (add (a.data, a.len, s), a.nr, a.nc); } ComplexMatrix operator - (double s, const ComplexMatrix& a) { return ComplexMatrix (subtract (s, a.data, a.len), a.nr, a.nc); } ComplexMatrix operator * (double s, const ComplexMatrix& a) { return ComplexMatrix (multiply (a.data, a.len, s), a.nr, a.nc); } ComplexMatrix operator / (double s, const ComplexMatrix& a) { return ComplexMatrix (divide (s, a.data, a.len), a.nr, a.nc); } ComplexMatrix operator + (Complex s, const ComplexMatrix& a) { return ComplexMatrix (add (s, a.data, a.len), a.nr, a.nc); } ComplexMatrix operator - (Complex s, const ComplexMatrix& a) { return ComplexMatrix (subtract (s, a.data, a.len), a.nr, a.nc); } ComplexMatrix operator * (Complex s, const ComplexMatrix& a) { return ComplexMatrix (multiply (s, a.data, a.len), a.nr, a.nc); } ComplexMatrix operator / (Complex s, const ComplexMatrix& a) { return ComplexMatrix (divide (s, a.data, a.len), a.nr, a.nc); } // matrix by column vector -> column vector operations ComplexColumnVector ComplexMatrix::operator * (const ColumnVector& a) const { ComplexColumnVector tmp (a); return *this * tmp; } ComplexColumnVector ComplexMatrix::operator * (const ComplexColumnVector& a) const { if (nc != a.len) FAIL; if (nc == 0 || nr == 0) return ComplexColumnVector (0); char trans = 'N'; int ld = nr; Complex alpha (1.0); Complex beta (0.0); int i_one = 1; Complex *y = new Complex [a.len]; F77_FCN (zgemv) (&trans, &nr, &nc, &alpha, data, &ld, a.data, &i_one, &beta, y, &i_one, 1L); return ComplexColumnVector (y, a.len); } // matrix by diagonal matrix -> matrix operations ComplexMatrix ComplexMatrix::operator + (const DiagMatrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); ComplexMatrix result (*this); for (int i = 0; i < a.len; i++) result.elem (i, i) += a.data[i]; return result; } ComplexMatrix ComplexMatrix::operator - (const DiagMatrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); ComplexMatrix result (*this); for (int i = 0; i < a.len; i++) result.elem (i, i) -= a.data[i]; return result; } ComplexMatrix ComplexMatrix::operator * (const DiagMatrix& a) const { if (nc != a.nr) FAIL; if (nr == 0 || nc == 0 || a.nc == 0) return ComplexMatrix (nr, nc, 0.0); Complex *c = new Complex [nr*a.nc]; Complex *ctmp = (Complex *) NULL; for (int j = 0; j < a.len; j++) { int idx = j * nr; ctmp = c + idx; if (a.data[j] == 1.0) { for (int i = 0; i < nr; i++) ctmp[i] = elem (i, j); } else if (a.data[j] == 0.0) { for (int i = 0; i < nr; i++) ctmp[i] = 0.0; } else { for (int i = 0; i < nr; i++) ctmp[i] = a.data[j] * elem (i, j); } } if (a.nr < a.nc) { for (int i = nr * nc; i < nr * a.nc; i++) ctmp[i] = 0.0; } return ComplexMatrix (c, nr, a.nc); } ComplexMatrix ComplexMatrix::operator + (const ComplexDiagMatrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); ComplexMatrix result (*this); for (int i = 0; i < a.len; i++) result.elem (i, i) += a.data[i]; return result; } ComplexMatrix ComplexMatrix::operator - (const ComplexDiagMatrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); ComplexMatrix result (*this); for (int i = 0; i < a.len; i++) result.elem (i, i) -= a.data[i]; return result; } ComplexMatrix ComplexMatrix::operator * (const ComplexDiagMatrix& a) const { if (nc != a.nr) FAIL; if (nr == 0 || nc == 0 || a.nc == 0) return ComplexMatrix (nr, nc, 0.0); Complex *c = new Complex [nr*a.nc]; Complex *ctmp = (Complex *) NULL; for (int j = 0; j < a.len; j++) { int idx = j * nr; ctmp = c + idx; if (a.data[j] == 1.0) { for (int i = 0; i < nr; i++) ctmp[i] = elem (i, j); } else if (a.data[j] == 0.0) { for (int i = 0; i < nr; i++) ctmp[i] = 0.0; } else { for (int i = 0; i < nr; i++) ctmp[i] = a.data[j] * elem (i, j); } } if (a.nr < a.nc) { for (int i = nr * nc; i < nr * a.nc; i++) ctmp[i] = 0.0; } return ComplexMatrix (c, nr, a.nc); } ComplexMatrix& ComplexMatrix::operator += (const DiagMatrix& a) { if (nr != a.nr || nc != a.nc) FAIL; for (int i = 0; i < a.len; i++) elem (i, i) += a.data[i]; return *this; } ComplexMatrix& ComplexMatrix::operator -= (const DiagMatrix& a) { if (nr != a.nr || nc != a.nc) FAIL; for (int i = 0; i < a.len; i++) elem (i, i) -= a.data[i]; return *this; } ComplexMatrix& ComplexMatrix::operator += (const ComplexDiagMatrix& a) { if (nr != a.nr || nc != a.nc) FAIL; for (int i = 0; i < a.len; i++) elem (i, i) += a.data[i]; return *this; } ComplexMatrix& ComplexMatrix::operator -= (const ComplexDiagMatrix& a) { if (nr != a.nr || nc != a.nc) FAIL; for (int i = 0; i < a.len; i++) elem (i, i) -= a.data[i]; return *this; } // matrix by matrix -> matrix operations ComplexMatrix ComplexMatrix::operator + (const Matrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); return ComplexMatrix (add (data, a.data, len), nr, nc); } ComplexMatrix ComplexMatrix::operator - (const Matrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); return ComplexMatrix (subtract (data, a.data, len), nr, nc); } ComplexMatrix ComplexMatrix::operator * (const Matrix& a) const { ComplexMatrix tmp (a); return *this * tmp; } ComplexMatrix ComplexMatrix::operator + (const ComplexMatrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); return ComplexMatrix (add (data, a.data, len), nr, nc); } ComplexMatrix ComplexMatrix::operator - (const ComplexMatrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); return ComplexMatrix (subtract (data, a.data, len), nr, nc); } ComplexMatrix ComplexMatrix::operator * (const ComplexMatrix& a) const { if (nc != a.nr) FAIL; if (nr == 0 || nc == 0 || a.nc == 0) return ComplexMatrix (nr, nc, 0.0); char trans = 'N'; char transa = 'N'; int ld = nr; int lda = a.nr; Complex alpha (1.0); Complex beta (0.0); int anc = a.nc; Complex *c = new Complex [nr*a.nc]; F77_FCN (zgemm) (&trans, &transa, &nr, &anc, &nc, &alpha, data, &ld, a.data, &lda, &beta, c, &nr, 1L, 1L); return ComplexMatrix (c, nr, a.nc); } ComplexMatrix ComplexMatrix::product (const Matrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); return ComplexMatrix (multiply (data, a.data, len), nr, nc); } ComplexMatrix ComplexMatrix::quotient (const Matrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); return ComplexMatrix (divide (data, a.data, len), nr, nc); } ComplexMatrix ComplexMatrix::product (const ComplexMatrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); return ComplexMatrix (multiply (data, a.data, len), nr, nc); } ComplexMatrix ComplexMatrix::quotient (const ComplexMatrix& a) const { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); return ComplexMatrix (divide (data, a.data, len), nr, nc); } ComplexMatrix& ComplexMatrix::operator += (const Matrix& a) { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return *this; add2 (data, a.data, len); return *this; } ComplexMatrix& ComplexMatrix::operator -= (const Matrix& a) { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return *this; subtract2 (data, a.data, len); return *this; } ComplexMatrix& ComplexMatrix::operator += (const ComplexMatrix& a) { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return *this; add2 (data, a.data, len); return *this; } ComplexMatrix& ComplexMatrix::operator -= (const ComplexMatrix& a) { if (nr != a.nr || nc != a.nc) FAIL; if (nr == 0 || nc == 0) return *this; subtract2 (data, a.data, len); return *this; } // unary operations ComplexMatrix ComplexMatrix::operator - (void) const { return ComplexMatrix (negate (data, len), nr, nc); } Matrix ComplexMatrix::operator ! (void) const { return Matrix (not (data, len), nr, nc); } // other operations ComplexMatrix map (c_c_Mapper f, const ComplexMatrix& a) { ComplexMatrix b (a); b.map (f); return b; } Matrix map (d_c_Mapper f, const ComplexMatrix& a) { Matrix b (a.nr, a.nc); for (int j = 0; j < a.nc; j++) for (int i = 0; i < a.nr; i++) b.elem (i, j) = f (a.elem (i, j)); return b; } void ComplexMatrix::map (c_c_Mapper f) { for (int i = 0; i < len; i++) data[i] = f (data[i]); } Matrix ComplexMatrix::all (void) const { Matrix retval; if (nr > 0 && nc > 0) { if (nr == 1) { retval.resize (1, 1); retval.elem (0, 0) = 1.0; for (int j = 0; j < nc; j++) { if (elem (0, j) == 0.0) { retval.elem (0, 0) = 0.0; break; } } } else if (nc == 1) { retval.resize (1, 1); retval.elem (0, 0) = 1.0; for (int i = 0; i < nr; i++) { if (elem (i, 0) == 0.0) { retval.elem (0, 0) = 0.0; break; } } } else { retval.resize (1, nc); for (int j = 0; j < nc; j++) { retval.elem (0, j) = 1.0; for (int i = 0; i < nr; i++) { if (elem (i, j) == 0.0) { retval.elem (0, j) = 0.0; break; } } } } } return retval; } Matrix ComplexMatrix::any (void) const { Matrix retval; if (nr > 0 && nc > 0) { if (nr == 1) { retval.resize (1, 1); retval.elem (0, 0) = 0.0; for (int j = 0; j < nc; j++) { if (elem (0, j) != 0.0) { retval.elem (0, 0) = 1.0; break; } } } else if (nc == 1) { retval.resize (1, 1); retval.elem (0, 0) = 0.0; for (int i = 0; i < nr; i++) { if (elem (i, 0) != 0.0) { retval.elem (0, 0) = 1.0; break; } } } else { retval.resize (1, nc); for (int j = 0; j < nc; j++) { retval.elem (0, j) = 0.0; for (int i = 0; i < nr; i++) { if (elem (i, j) != 0.0) { retval.elem (0, j) = 1.0; break; } } } } } return retval; } ComplexMatrix ComplexMatrix::cumprod (void) const { ComplexMatrix retval; if (nr > 0 && nc > 0) { if (nr == 1) { retval.resize (1, nc); Complex prod = elem (0, 0); for (int j = 0; j < nc; j++) { retval.elem (0, j) = prod; if (j < nc - 1) prod *= elem (0, j+1); } } else if (nc == 1) { retval.resize (nr, 1); Complex prod = elem (0, 0); for (int i = 0; i < nr; i++) { retval.elem (i, 0) = prod; if (i < nr - 1) prod *= elem (i+1, 0); } } else { retval.resize (nr, nc); for (int j = 0; j < nc; j++) { Complex prod = elem (0, j); for (int i = 0; i < nr; i++) { retval.elem (i, j) = prod; if (i < nr - 1) prod *= elem (i+1, j); } } } } return retval; } ComplexMatrix ComplexMatrix::cumsum (void) const { ComplexMatrix retval; if (nr > 0 && nc > 0) { if (nr == 1) { retval.resize (1, nc); Complex sum = elem (0, 0); for (int j = 0; j < nc; j++) { retval.elem (0, j) = sum; if (j < nc - 1) sum += elem (0, j+1); } } else if (nc == 1) { retval.resize (nr, 1); Complex sum = elem (0, 0); for (int i = 0; i < nr; i++) { retval.elem (i, 0) = sum; if (i < nr - 1) sum += elem (i+1, 0); } } else { retval.resize (nr, nc); for (int j = 0; j < nc; j++) { Complex sum = elem (0, j); for (int i = 0; i < nr; i++) { retval.elem (i, j) = sum; if (i < nr - 1) sum += elem (i+1, j); } } } } return retval; } ComplexMatrix ComplexMatrix::prod (void) const { ComplexMatrix retval; if (nr > 0 && nc > 0) { if (nr == 1) { retval.resize (1, 1); retval.elem (0, 0) = 1.0; for (int j = 0; j < nc; j++) retval.elem (0, 0) *= elem (0, j); } else if (nc == 1) { retval.resize (1, 1); retval.elem (0, 0) = 1.0; for (int i = 0; i < nr; i++) retval.elem (0, 0) *= elem (i, 0); } else { retval.resize (1, nc); for (int j = 0; j < nc; j++) { retval.elem (0, j) = 1.0; for (int i = 0; i < nr; i++) retval.elem (0, j) *= elem (i, j); } } } return retval; } ComplexMatrix ComplexMatrix::sum (void) const { ComplexMatrix retval; if (nr > 0 && nc > 0) { if (nr == 1) { retval.resize (1, 1); retval.elem (0, 0) = 0.0; for (int j = 0; j < nc; j++) retval.elem (0, 0) += elem (0, j); } else if (nc == 1) { retval.resize (1, 1); retval.elem (0, 0) = 0.0; for (int i = 0; i < nr; i++) retval.elem (0, 0) += elem (i, 0); } else { retval.resize (1, nc); for (int j = 0; j < nc; j++) { retval.elem (0, j) = 0.0; for (int i = 0; i < nr; i++) retval.elem (0, j) += elem (i, j); } } } return retval; } ComplexMatrix ComplexMatrix::sumsq (void) const { ComplexMatrix retval; if (nr > 0 && nc > 0) { if (nr == 1) { retval.resize (1, 1); retval.elem (0, 0) = 0.0; for (int j = 0; j < nc; j++) { Complex d = elem (0, j); retval.elem (0, 0) += d * d; } } else if (nc == 1) { retval.resize (1, 1); retval.elem (0, 0) = 0.0; for (int i = 0; i < nr; i++) { Complex d = elem (i, 0); retval.elem (0, 0) += d * d; } } else { retval.resize (1, nc); for (int j = 0; j < nc; j++) { retval.elem (0, j) = 0.0; for (int i = 0; i < nr; i++) { Complex d = elem (i, j); retval.elem (0, j) += d * d; } } } } return retval; } ComplexColumnVector ComplexMatrix::diag (void) const { return diag (0); } ComplexColumnVector ComplexMatrix::diag (int k) const { int nnr = nr; int nnc = nc; if (k > 0) nnc -= k; else if (k < 0) nnr += k; ComplexColumnVector d; if (nnr > 0 && nnc > 0) { int ndiag = (nnr < nnc) ? nnr : nnc; d.resize (ndiag); if (k > 0) { for (int i = 0; i < ndiag; i++) d.elem (i) = elem (i, i+k); } else if ( k < 0) { for (int i = 0; i < ndiag; i++) d.elem (i) = elem (i-k, i); } else { for (int i = 0; i < ndiag; i++) d.elem (i) = elem (i, i); } } else cerr << "diag: requested diagonal out of range\n"; return d; } ComplexColumnVector ComplexMatrix::row_min (void) const { ComplexColumnVector result; if (nr > 0 && nc > 0) { result.resize (nr); for (int i = 0; i < nr; i++) { Complex res = elem (i, 0); double absres = abs (res); for (int j = 1; j < nc; j++) if (abs (elem (i, j)) < absres) { res = elem (i, j); absres = abs (res); } result.elem (i) = res; } } return result; } ComplexColumnVector ComplexMatrix::row_max (void) const { ComplexColumnVector result; if (nr > 0 && nc > 0) { result.resize (nr); for (int i = 0; i < nr; i++) { Complex res = elem (i, 0); double absres = abs (res); for (int j = 1; j < nc; j++) if (abs (elem (i, j)) > absres) { res = elem (i, j); absres = abs (res); } result.elem (i) = res; } } return result; } ComplexRowVector ComplexMatrix::column_min (void) const { ComplexRowVector result; if (nr > 0 && nc > 0) { result.resize (nc); for (int j = 0; j < nc; j++) { Complex res = elem (0, j); double absres = abs (res); for (int i = 1; i < nr; i++) if (abs (elem (i, j)) < absres) { res = elem (i, j); absres = abs (res); } result.elem (j) = res; } } return result; } ComplexRowVector ComplexMatrix::column_max (void) const { ComplexRowVector result; if (nr > 0 && nc > 0) { result.resize (nc); for (int j = 0; j < nc; j++) { Complex res = elem (0, j); double absres = abs (res); for (int i = 1; i < nr; i++) if (abs (elem (i, j)) > absres) { res = elem (i, j); absres = abs (res); } result.elem (j) = res; } } return result; } // i/o ostream& operator << (ostream& os, const ComplexMatrix& a) { // int field_width = os.precision () + 7; for (int i = 0; i < a.nr; i++) { for (int j = 0; j < a.nc; j++) os << " " /* setw (field_width) */ << a.elem (i, j); os << "\n"; } return os; } istream& operator >> (istream& is, ComplexMatrix& a) { int nr = a.rows (); int nc = a.columns (); if (nr < 1 || nc < 1) is.clear (ios::badbit); else { Complex tmp; for (int i = 0; i < nr; i++) for (int j = 0; j < nc; j++) { is >> tmp; if (is) a.elem (i, j) = tmp; else break; } } return is; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; page-delimiter: "^/\\*" *** ;;; End: *** */