Mercurial > hg > octave-lyh
view scripts/geometry/triplot.m @ 7583:1d7c23e288d7
__go_draw_axes__: use strcmpi for text properties; use get for hidden properties
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Tue, 11 Mar 2008 23:12:17 -0400 |
parents | a1dbe9d80eee |
children | eb7bdde776f2 |
line wrap: on
line source
## Copyright (C) 2007 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} triplot (@var{tri}, @var{x}, @var{y}) ## @deftypefnx {Function File} {} triplot (@var{tri}, @var{x}, @var{y}, @var{linespec}) ## @deftypefnx {Function File} {@var{h} = } triplot (@dots{}) ## Plot a triangular mesh in 2D. The variable @var{tri} is the triangular ## meshing of the points @code{(@var{x}, @var{y})} which is returned from ## @code{delaunay}. If given, the @var{linespec} determines the properties ## to use for the lines. The output argument @var{h} is the graphic handle ## to the plot. ## @seealso{plot, trimesh, delaunay} ## @end deftypefn function h = triplot (tri, x, y, varargin) if (nargin < 3) print_usage (); endif idx = tri(:, [1, 2, 3, 1]).'; nt = size (tri, 1); if (nargout > 0) h = plot ([x(idx); NaN*ones(1, nt)](:), [y(idx); NaN*ones(1, nt)](:), varargin{:}); else plot ([x(idx); NaN*ones(1, nt)](:), [y(idx); NaN*ones(1, nt)](:), varargin{:}); endif endfunction %!demo %! rand ('state', 2) %! x = rand (20, 1); %! y = rand (20, 1); %! tri = delaunay (x, y); %! triplot (tri, x, y);