Mercurial > hg > octave-lyh
view scripts/miscellaneous/bincoeff.m @ 11233:1dfbcc9eee92
eliminate special cases for __DECCXX
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Wed, 10 Nov 2010 21:11:43 -0500 |
parents | 693e22af08ae |
children | 1740012184f9 |
line wrap: on
line source
## Copyright (C) 1995, 1996, 1999, 2000, 2002, 2004, 2005, 2006, 2007, ## 2008, 2009 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Mapping Function} {} bincoeff (@var{n}, @var{k}) ## Return the binomial coefficient of @var{n} and @var{k}, defined as ## @tex ## $$ ## {n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!} ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## / \ ## | n | n (n-1) (n-2) @dots{} (n-k+1) ## | | = ------------------------- ## | k | k! ## \ / ## @end group ## @end example ## ## @end ifnottex ## For example: ## ## @example ## @group ## bincoeff (5, 2) ## @result{} 10 ## @end group ## @end example ## ## In most cases, the @code{nchoosek} function is faster for small ## scalar integer arguments. It also warns about loss of precision for ## big arguments. ## ## @seealso{nchoosek} ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Created: 8 October 1994 ## Adapted-By: jwe function b = bincoeff (n, k) if (nargin != 2) print_usage (); endif [retval, n, k] = common_size (n, k); if (retval > 0) error ("bincoeff: n and k must be of common size or scalars"); endif sz = size (n); b = zeros (sz); ind = (! (k >= 0) | (k != real (round (k))) | isnan (n)); b(ind) = NaN; ind = (k == 0); b(ind) = 1; ind = ((k > 0) & ((n == real (round (n))) & (n < 0))); b(ind) = (-1) .^ k(ind) .* exp (gammaln (abs (n(ind)) + k(ind)) - gammaln (k(ind) + 1) - gammaln (abs (n(ind)))); ind = ((k > 0) & (n >= k)); b(ind) = exp (gammaln (n(ind) + 1) - gammaln (k(ind) + 1) - gammaln (n(ind) - k(ind) + 1)); ind = ((k > 0) & ((n != real (round (n))) & (n < k))); b(ind) = (1/pi) * exp (gammaln (n(ind) + 1) - gammaln (k(ind) + 1) + gammaln (k(ind) - n(ind)) + log (sin (pi * (n(ind) - k(ind) + 1)))); ## Clean up rounding errors. ind = (n == round (n)); b(ind) = round (b(ind)); ind = (n != round (n)); b(ind) = real (b(ind)); endfunction %!assert(bincoeff(4,2), 6) %!assert(bincoeff(2,4), 0) %!assert(bincoeff(0.4,2), -.12, 8*eps) %!assert(bincoeff (5, 2) == 10 && bincoeff (50, 6) == 15890700); %!error bincoeff (); %!error bincoeff (1, 2, 3);