Mercurial > hg > octave-lyh
view liboctave/fCRowVector.cc @ 14444:245963d3d628 stable
pkg: bug fix - accessing non-existent variable for error message
author | Miguel Bazdresch <lmb@2pif.info> |
---|---|
date | Thu, 01 Mar 2012 14:58:59 +0000 |
parents | 72c96de7a403 |
children | 460a3c6d8bf1 |
line wrap: on
line source
// RowVector manipulations. /* Copyright (C) 1994-2012 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <iostream> #include "Array-util.h" #include "f77-fcn.h" #include "functor.h" #include "lo-error.h" #include "mx-base.h" #include "mx-inlines.cc" #include "oct-cmplx.h" // Fortran functions we call. extern "C" { F77_RET_T F77_FUNC (cgemv, CGEMV) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, const FloatComplex&, const FloatComplex*, const octave_idx_type&, const FloatComplex*, const octave_idx_type&, const FloatComplex&, FloatComplex*, const octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (xcdotu, XCDOTU) (const octave_idx_type&, const FloatComplex*, const octave_idx_type&, const FloatComplex*, const octave_idx_type&, FloatComplex&); } // FloatComplex Row Vector class bool FloatComplexRowVector::operator == (const FloatComplexRowVector& a) const { octave_idx_type len = length (); if (len != a.length ()) return 0; return mx_inline_equal (len, data (), a.data ()); } bool FloatComplexRowVector::operator != (const FloatComplexRowVector& a) const { return !(*this == a); } // destructive insert/delete/reorder operations FloatComplexRowVector& FloatComplexRowVector::insert (const FloatRowVector& a, octave_idx_type c) { octave_idx_type a_len = a.length (); if (c < 0 || c + a_len > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } if (a_len > 0) { make_unique (); for (octave_idx_type i = 0; i < a_len; i++) xelem (c+i) = a.elem (i); } return *this; } FloatComplexRowVector& FloatComplexRowVector::insert (const FloatComplexRowVector& a, octave_idx_type c) { octave_idx_type a_len = a.length (); if (c < 0 || c + a_len > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } if (a_len > 0) { make_unique (); for (octave_idx_type i = 0; i < a_len; i++) xelem (c+i) = a.elem (i); } return *this; } FloatComplexRowVector& FloatComplexRowVector::fill (float val) { octave_idx_type len = length (); if (len > 0) { make_unique (); for (octave_idx_type i = 0; i < len; i++) xelem (i) = val; } return *this; } FloatComplexRowVector& FloatComplexRowVector::fill (const FloatComplex& val) { octave_idx_type len = length (); if (len > 0) { make_unique (); for (octave_idx_type i = 0; i < len; i++) xelem (i) = val; } return *this; } FloatComplexRowVector& FloatComplexRowVector::fill (float val, octave_idx_type c1, octave_idx_type c2) { octave_idx_type len = length (); if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (c1 > c2) { octave_idx_type tmp = c1; c1 = c2; c2 = tmp; } if (c2 >= c1) { make_unique (); for (octave_idx_type i = c1; i <= c2; i++) xelem (i) = val; } return *this; } FloatComplexRowVector& FloatComplexRowVector::fill (const FloatComplex& val, octave_idx_type c1, octave_idx_type c2) { octave_idx_type len = length (); if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (c1 > c2) { octave_idx_type tmp = c1; c1 = c2; c2 = tmp; } if (c2 >= c1) { make_unique (); for (octave_idx_type i = c1; i <= c2; i++) xelem (i) = val; } return *this; } FloatComplexRowVector FloatComplexRowVector::append (const FloatRowVector& a) const { octave_idx_type len = length (); octave_idx_type nc_insert = len; FloatComplexRowVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nc_insert); return retval; } FloatComplexRowVector FloatComplexRowVector::append (const FloatComplexRowVector& a) const { octave_idx_type len = length (); octave_idx_type nc_insert = len; FloatComplexRowVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nc_insert); return retval; } FloatComplexColumnVector FloatComplexRowVector::hermitian (void) const { return MArray<FloatComplex>::hermitian (std::conj); } FloatComplexColumnVector FloatComplexRowVector::transpose (void) const { return MArray<FloatComplex>::transpose (); } FloatComplexRowVector conj (const FloatComplexRowVector& a) { return do_mx_unary_map<FloatComplex, FloatComplex, std::conj<float> > (a); } // resize is the destructive equivalent for this one FloatComplexRowVector FloatComplexRowVector::extract (octave_idx_type c1, octave_idx_type c2) const { if (c1 > c2) { octave_idx_type tmp = c1; c1 = c2; c2 = tmp; } octave_idx_type new_c = c2 - c1 + 1; FloatComplexRowVector result (new_c); for (octave_idx_type i = 0; i < new_c; i++) result.elem (i) = elem (c1+i); return result; } FloatComplexRowVector FloatComplexRowVector::extract_n (octave_idx_type r1, octave_idx_type n) const { FloatComplexRowVector result (n); for (octave_idx_type i = 0; i < n; i++) result.elem (i) = elem (r1+i); return result; } // row vector by row vector -> row vector operations FloatComplexRowVector& FloatComplexRowVector::operator += (const FloatRowVector& a) { octave_idx_type len = length (); octave_idx_type a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator +=", len, a_len); return *this; } if (len == 0) return *this; FloatComplex *d = fortran_vec (); // Ensures only one reference to my privates! mx_inline_add2 (len, d, a.data ()); return *this; } FloatComplexRowVector& FloatComplexRowVector::operator -= (const FloatRowVector& a) { octave_idx_type len = length (); octave_idx_type a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator -=", len, a_len); return *this; } if (len == 0) return *this; FloatComplex *d = fortran_vec (); // Ensures only one reference to my privates! mx_inline_sub2 (len, d, a.data ()); return *this; } // row vector by matrix -> row vector FloatComplexRowVector operator * (const FloatComplexRowVector& v, const FloatComplexMatrix& a) { FloatComplexRowVector retval; octave_idx_type len = v.length (); octave_idx_type a_nr = a.rows (); octave_idx_type a_nc = a.cols (); if (a_nr != len) gripe_nonconformant ("operator *", 1, len, a_nr, a_nc); else { if (len == 0) retval.resize (a_nc, 0.0); else { // Transpose A to form A'*x == (x'*A)' octave_idx_type ld = a_nr; retval.resize (a_nc); FloatComplex *y = retval.fortran_vec (); F77_XFCN (cgemv, CGEMV, (F77_CONST_CHAR_ARG2 ("T", 1), a_nr, a_nc, 1.0, a.data (), ld, v.data (), 1, 0.0, y, 1 F77_CHAR_ARG_LEN (1))); } } return retval; } FloatComplexRowVector operator * (const FloatRowVector& v, const FloatComplexMatrix& a) { FloatComplexRowVector tmp (v); return tmp * a; } // other operations FloatComplex FloatComplexRowVector::min (void) const { octave_idx_type len = length (); if (len == 0) return FloatComplex (0.0); FloatComplex res = elem (0); float absres = std::abs (res); for (octave_idx_type i = 1; i < len; i++) if (std::abs (elem (i)) < absres) { res = elem (i); absres = std::abs (res); } return res; } FloatComplex FloatComplexRowVector::max (void) const { octave_idx_type len = length (); if (len == 0) return FloatComplex (0.0); FloatComplex res = elem (0); float absres = std::abs (res); for (octave_idx_type i = 1; i < len; i++) if (std::abs (elem (i)) > absres) { res = elem (i); absres = std::abs (res); } return res; } // i/o std::ostream& operator << (std::ostream& os, const FloatComplexRowVector& a) { // int field_width = os.precision () + 7; for (octave_idx_type i = 0; i < a.length (); i++) os << " " /* setw (field_width) */ << a.elem (i); return os; } std::istream& operator >> (std::istream& is, FloatComplexRowVector& a) { octave_idx_type len = a.length(); if (len > 0) { FloatComplex tmp; for (octave_idx_type i = 0; i < len; i++) { is >> tmp; if (is) a.elem (i) = tmp; else break; } } return is; } // row vector by column vector -> scalar // row vector by column vector -> scalar FloatComplex operator * (const FloatComplexRowVector& v, const FloatColumnVector& a) { FloatComplexColumnVector tmp (a); return v * tmp; } FloatComplex operator * (const FloatComplexRowVector& v, const FloatComplexColumnVector& a) { FloatComplex retval (0.0, 0.0); octave_idx_type len = v.length (); octave_idx_type a_len = a.length (); if (len != a_len) gripe_nonconformant ("operator *", len, a_len); else if (len != 0) F77_FUNC (xcdotu, XCDOTU) (len, v.data (), 1, a.data (), 1, retval); return retval; } // other operations FloatComplexRowVector linspace (const FloatComplex& x1, const FloatComplex& x2, octave_idx_type n) { if (n < 1) n = 1; NoAlias<FloatComplexRowVector> retval (n); FloatComplex delta = (x2 - x1) / (n - 1.0f); retval(0) = x1; for (octave_idx_type i = 1; i < n-1; i++) retval(i) = x1 + static_cast<float> (i)*delta; retval(n-1) = x2; return retval; }