Mercurial > hg > octave-lyh
view scripts/statistics/base/run_count.m @ 9207:25f50d2d76b3
improve TR updating strategy for fminunc and fsolve
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Sun, 17 May 2009 17:54:51 +0200 |
parents | 1bf0ce0930be |
children | 16f53d29049f |
line wrap: on
line source
## Copyright (C) 1995, 1996, 1997, 1998, 2000, 2002, 2004, 2005, 2006, ## 2007 Friedrich Leisch ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} run_count (@var{x}, @var{n}) ## Count the upward runs along the first non-singleton dimension of ## @var{x} of length 1, 2, @dots{}, @var{n}-1 and greater than or equal ## to @var{n}. If the optional argument @var{dim} is given operate ## along this dimension ## @end deftypefn ## Author: FL <Friedrich.Leisch@ci.tuwien.ac.at> ## Description: Count upward runs function retval = run_count (x, n, dim) if (nargin != 2 && nargin != 3) print_usage (); endif nd = ndims (x); sz = size (x); if (nargin != 3) ## Find the first non-singleton dimension. dim = 1; while (dim < nd + 1 && sz(dim) == 1) dim = dim + 1; endwhile if (dim > nd) dim = 1; endif else if (! (isscalar (dim) && dim == round (dim)) && dim > 0 && dim < (nd + 1)) error ("run_count: dim must be an integer and valid dimension"); endif endif if (! (isscalar (n) && n == round (n)) && n > 0) error ("run_count: n must be a positive integer"); endif nd = ndims (x); if (dim != 1) perm = [1 : nd]; perm(1) = dim; perm(dim) = 1; x = permute (x, perm); endif sz = size (x); idx = cell (); for i = 1 : nd idx{i} = 1 : sz(i); endfor c = sz(1); tmp = zeros ([c + 1, sz(2 : end)]); infvec = Inf * ones ([1, sz(2 : end)]); ind = find (diff ([infvec; x; -infvec]) < 0); tmp(ind(2:end) - 1) = diff(ind); tmp = tmp(idx{:}); sz(1) = n; retval = zeros (sz); for k = 1 : (n-1) idx{1} = k; retval(idx{:}) = sum (tmp == k); endfor idx{1} = n; retval (idx{:}) = sum (tmp >= n); if (dim != 1) retval = ipermute (retval, perm); endif endfunction