view scripts/deprecated/polyderiv.m @ 17441:2973de961a66

stairs.m: Overhaul function. * scripts/plot/stairs.m: Clean up indentation. Fix input validation for size mismatch and linestyle arguments. Correctly implement color rotation for multiple columns. Accept linestyle argument to change line and marker properties. Add titles to %!demos. Add %!error tests for input validation.
author Rik <rik@octave.org>
date Wed, 18 Sep 2013 13:01:48 -0700
parents 1c89599167a6
children
line wrap: on
line source

## Copyright (C) 1994-2012 John W. Eaton
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} polyderiv (@var{p})
## @deftypefnx {Function File} {[@var{k}] =} polyderiv (@var{a}, @var{b})
## @deftypefnx {Function File} {[@var{q}, @var{d}] =} polyderiv (@var{b}, @var{a})
## Return the coefficients of the derivative of the polynomial whose
## coefficients are given by the vector @var{p}.  If a pair of polynomials
## is given, return the derivative of the product @math{@var{a}*@var{b}}.
## If two inputs and two outputs are given, return the derivative of the
## polynomial quotient @math{@var{b}/@var{a}}.  The quotient numerator is
## in @var{q} and the denominator in @var{d}.
## @seealso{poly, polyint, polyreduce, roots, conv, deconv, residue,
## filter, polygcd, polyval, polyvalm}
## @end deftypefn

## Author: Tony Richardson <arichard@stark.cc.oh.us>
## Created: June 1994
## Adapted-By: jwe

function [q, d] = polyderiv (p, a)

  persistent warned = false;
  if (! warned)
    warned = true;
    warning ("Octave:deprecated-function",
             "polyderiv is obsolete and will be removed from a future version of Octave; please use polyder instead");
  endif

  if (nargin == 1 || nargin == 2)
    if (! isvector (p))
      error ("polyderiv: argument must be a vector");
    endif
    if (nargin == 2)
      if (! isvector (a))
        error ("polyderiv: argument must be a vector");
      endif
      if (nargout == 1)
        ## derivative of p*a returns a single polynomial
        q = polyderiv (conv (p, a));
      else
        ## derivative of p/a returns numerator and denominator
        d = conv (a, a);
        if (numel (p) == 1)
          q = -p * polyderiv (a);
        elseif (numel (a) == 1)
          q = a * polyderiv (p);
        else
          q = conv (polyderiv (p), a) - conv (p, polyderiv (a));
          q = polyreduce (q);
        endif

        ## remove common factors from numerator and denominator
        x = polygcd (q, d);
        if (length(x) != 1)
          q = deconv (q, x);
          d = deconv (d, x);
        endif

        ## move all the gain into the numerator
        q = q/d(1);
        d = d/d(1);
      endif
    else
      lp = numel (p);
      if (lp == 1)
        q = 0;
        return;
      elseif (lp == 0)
        q = [];
        return;
      endif

      ## Force P to be a row vector.
      p = p(:).';

      q = p(1:(lp-1)) .* [(lp-1):-1:1];
    endif
  else
    print_usage ();
  endif

endfunction


%!assert(all (all (polyderiv ([1, 2, 3]) == [2, 2])));

%!assert(polyderiv (13) == 0);

%!error polyderiv ([]);

%!error polyderiv ([1, 2; 3, 4]);