view scripts/special-matrix/vander.m @ 17441:2973de961a66

stairs.m: Overhaul function. * scripts/plot/stairs.m: Clean up indentation. Fix input validation for size mismatch and linestyle arguments. Correctly implement color rotation for multiple columns. Accept linestyle argument to change line and marker properties. Add titles to %!demos. Add %!error tests for input validation.
author Rik <rik@octave.org>
date Wed, 18 Sep 2013 13:01:48 -0700
parents f3d52523cde1
children
line wrap: on
line source

## Copyright (C) 1993-2012 John W. Eaton
## Copyright (C) 2009 VZLU Prague
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} vander (@var{c})
## @deftypefnx {Function File} {} vander (@var{c}, @var{n})
## Return the Vandermonde matrix whose next to last column is @var{c}.
## If @var{n} is specified, it determines the number of columns;
## otherwise, @var{n} is taken to be equal to the length of @var{c}.
##
## A Vandermonde matrix has the form:
## @tex
## $$
## \left[\matrix{c_1^{n-1}  & \cdots & c_1^2  & c_1    & 1      \cr
##               c_2^{n-1}  & \cdots & c_2^2  & c_2    & 1      \cr
##               \vdots     & \ddots & \vdots & \vdots & \vdots \cr
##               c_n^{n-1}  & \cdots & c_n^2  & c_n    & 1      }\right]
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## c(1)^(n-1) @dots{} c(1)^2  c(1)  1
## c(2)^(n-1) @dots{} c(2)^2  c(2)  1
##     .     .      .      .    .
##     .       .    .      .    .
##     .         .  .      .    .
## c(n)^(n-1) @dots{} c(n)^2  c(n)  1
## @end group
## @end example
##
## @end ifnottex
## @seealso{polyfit}
## @end deftypefn

## Author: jwe

function retval = vander (c, n)

  if (nargin == 1)
    n = length (c);
  elseif (nargin != 2)
    print_usage ();
  endif

  if (! isvector (c))
    error ("vander: polynomial C must be a vector");
  endif

  ## avoiding many ^s appears to be faster for n >= 100.
  retval = zeros (length (c), n, class (c));
  d = 1;
  c = c(:);
  for i = n:-1:1
    retval(:,i) = d;
    d .*= c;
  endfor

endfunction


%!test
%! c = [0,1,2,3];
%! expect = [0,0,0,1; 1,1,1,1; 8,4,2,1; 27,9,3,1];
%! assert (vander (c), expect);

%!assert (vander (1), 1)
%!assert (vander ([1, 2, 3]), vander ([1; 2; 3]))
%!assert (vander ([1, 2, 3]), [1, 1, 1; 4, 2, 1; 9, 3, 1])
%!assert (vander ([1, 2, 3]*i), [-1, i, 1; -4, 2i, 1; -9, 3i, 1])

%!assert (vander (2, 3), [4, 2, 1])
%!assert (vander ([2, 3], 3), [4, 2, 1; 9, 3, 1])

%!error vander ()
%!error vander (1, 2, 3)
%!error <polynomial C must be a vector> vander ([1, 2; 3, 4])