Mercurial > hg > octave-lyh
view liboctave/CColVector.cc @ 7482:29980c6b8604
don't check f77_exception_encountered
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 14 Feb 2008 21:57:50 -0500 |
parents | a1dbe9d80eee |
children | 8c32f95c2639 |
line wrap: on
line source
// ColumnVector manipulations. /* Copyright (C) 1994, 1995, 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2005, 2007 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <iostream> #include "Array-util.h" #include "f77-fcn.h" #include "lo-error.h" #include "mx-base.h" #include "mx-inlines.cc" #include "oct-cmplx.h" // Fortran functions we call. extern "C" { F77_RET_T F77_FUNC (zgemv, ZGEMV) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, const Complex&, const Complex*, const octave_idx_type&, const Complex*, const octave_idx_type&, const Complex&, Complex*, const octave_idx_type& F77_CHAR_ARG_LEN_DECL); } // Complex Column Vector class ComplexColumnVector::ComplexColumnVector (const ColumnVector& a) : MArray<Complex> (a.length ()) { for (octave_idx_type i = 0; i < length (); i++) elem (i) = a.elem (i); } bool ComplexColumnVector::operator == (const ComplexColumnVector& a) const { octave_idx_type len = length (); if (len != a.length ()) return 0; return mx_inline_equal (data (), a.data (), len); } bool ComplexColumnVector::operator != (const ComplexColumnVector& a) const { return !(*this == a); } // destructive insert/delete/reorder operations ComplexColumnVector& ComplexColumnVector::insert (const ColumnVector& a, octave_idx_type r) { octave_idx_type a_len = a.length (); if (r < 0 || r + a_len > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } if (a_len > 0) { make_unique (); for (octave_idx_type i = 0; i < a_len; i++) xelem (r+i) = a.elem (i); } return *this; } ComplexColumnVector& ComplexColumnVector::insert (const ComplexColumnVector& a, octave_idx_type r) { octave_idx_type a_len = a.length (); if (r < 0 || r + a_len > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } if (a_len > 0) { make_unique (); for (octave_idx_type i = 0; i < a_len; i++) xelem (r+i) = a.elem (i); } return *this; } ComplexColumnVector& ComplexColumnVector::fill (double val) { octave_idx_type len = length (); if (len > 0) { make_unique (); for (octave_idx_type i = 0; i < len; i++) xelem (i) = val; } return *this; } ComplexColumnVector& ComplexColumnVector::fill (const Complex& val) { octave_idx_type len = length (); if (len > 0) { make_unique (); for (octave_idx_type i = 0; i < len; i++) xelem (i) = val; } return *this; } ComplexColumnVector& ComplexColumnVector::fill (double val, octave_idx_type r1, octave_idx_type r2) { octave_idx_type len = length (); if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; } if (r2 >= r1) { make_unique (); for (octave_idx_type i = r1; i <= r2; i++) xelem (i) = val; } return *this; } ComplexColumnVector& ComplexColumnVector::fill (const Complex& val, octave_idx_type r1, octave_idx_type r2) { octave_idx_type len = length (); if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; } if (r2 >= r1) { make_unique (); for (octave_idx_type i = r1; i <= r2; i++) xelem (i) = val; } return *this; } ComplexColumnVector ComplexColumnVector::stack (const ColumnVector& a) const { octave_idx_type len = length (); octave_idx_type nr_insert = len; ComplexColumnVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nr_insert); return retval; } ComplexColumnVector ComplexColumnVector::stack (const ComplexColumnVector& a) const { octave_idx_type len = length (); octave_idx_type nr_insert = len; ComplexColumnVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nr_insert); return retval; } ComplexRowVector ComplexColumnVector::hermitian (void) const { octave_idx_type len = length (); return ComplexRowVector (mx_inline_conj_dup (data (), len), len); } ComplexRowVector ComplexColumnVector::transpose (void) const { return ComplexRowVector (*this); } ComplexColumnVector conj (const ComplexColumnVector& a) { octave_idx_type a_len = a.length (); ComplexColumnVector retval; if (a_len > 0) retval = ComplexColumnVector (mx_inline_conj_dup (a.data (), a_len), a_len); return retval; } // resize is the destructive equivalent for this one ComplexColumnVector ComplexColumnVector::extract (octave_idx_type r1, octave_idx_type r2) const { if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; } octave_idx_type new_r = r2 - r1 + 1; ComplexColumnVector result (new_r); for (octave_idx_type i = 0; i < new_r; i++) result.elem (i) = elem (r1+i); return result; } ComplexColumnVector ComplexColumnVector::extract_n (octave_idx_type r1, octave_idx_type n) const { ComplexColumnVector result (n); for (octave_idx_type i = 0; i < n; i++) result.elem (i) = elem (r1+i); return result; } // column vector by column vector -> column vector operations ComplexColumnVector& ComplexColumnVector::operator += (const ColumnVector& a) { octave_idx_type len = length (); octave_idx_type a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator +=", len, a_len); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! mx_inline_add2 (d, a.data (), len); return *this; } ComplexColumnVector& ComplexColumnVector::operator -= (const ColumnVector& a) { octave_idx_type len = length (); octave_idx_type a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator -=", len, a_len); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! mx_inline_subtract2 (d, a.data (), len); return *this; } // matrix by column vector -> column vector operations ComplexColumnVector operator * (const ComplexMatrix& m, const ColumnVector& a) { ComplexColumnVector tmp (a); return m * tmp; } ComplexColumnVector operator * (const ComplexMatrix& m, const ComplexColumnVector& a) { ComplexColumnVector retval; octave_idx_type nr = m.rows (); octave_idx_type nc = m.cols (); octave_idx_type a_len = a.length (); if (nc != a_len) gripe_nonconformant ("operator *", nr, nc, a_len, 1); else { if (nc == 0 || nr == 0) retval.resize (nr, 0.0); else { octave_idx_type ld = nr; retval.resize (nr); Complex *y = retval.fortran_vec (); F77_XFCN (zgemv, ZGEMV, (F77_CONST_CHAR_ARG2 ("N", 1), nr, nc, 1.0, m.data (), ld, a.data (), 1, 0.0, y, 1 F77_CHAR_ARG_LEN (1))); } } return retval; } // matrix by column vector -> column vector operations ComplexColumnVector operator * (const Matrix& m, const ComplexColumnVector& a) { ComplexMatrix tmp (m); return tmp * a; } // diagonal matrix by column vector -> column vector operations ComplexColumnVector operator * (const DiagMatrix& m, const ComplexColumnVector& a) { octave_idx_type nr = m.rows (); octave_idx_type nc = m.cols (); octave_idx_type a_len = a.length (); if (nc != a_len) { gripe_nonconformant ("operator *", nr, nc, a_len, 1); return ComplexColumnVector (); } if (nc == 0 || nr == 0) return ComplexColumnVector (0); ComplexColumnVector result (nr); for (octave_idx_type i = 0; i < a_len; i++) result.elem (i) = a.elem (i) * m.elem (i, i); for (octave_idx_type i = a_len; i < nr; i++) result.elem (i) = 0.0; return result; } ComplexColumnVector operator * (const ComplexDiagMatrix& m, const ColumnVector& a) { octave_idx_type nr = m.rows (); octave_idx_type nc = m.cols (); octave_idx_type a_len = a.length (); if (nc != a_len) { gripe_nonconformant ("operator *", nr, nc, a_len, 1); return ComplexColumnVector (); } if (nc == 0 || nr == 0) return ComplexColumnVector (0); ComplexColumnVector result (nr); for (octave_idx_type i = 0; i < a_len; i++) result.elem (i) = a.elem (i) * m.elem (i, i); for (octave_idx_type i = a_len; i < nr; i++) result.elem (i) = 0.0; return result; } ComplexColumnVector operator * (const ComplexDiagMatrix& m, const ComplexColumnVector& a) { octave_idx_type nr = m.rows (); octave_idx_type nc = m.cols (); octave_idx_type a_len = a.length (); if (nc != a_len) { gripe_nonconformant ("operator *", nr, nc, a_len, 1); return ComplexColumnVector (); } if (nc == 0 || nr == 0) return ComplexColumnVector (0); ComplexColumnVector result (nr); for (octave_idx_type i = 0; i < a_len; i++) result.elem (i) = a.elem (i) * m.elem (i, i); for (octave_idx_type i = a_len; i < nr; i++) result.elem (i) = 0.0; return result; } // other operations ComplexColumnVector ComplexColumnVector::map (c_c_Mapper f) const { ComplexColumnVector b (*this); return b.apply (f); } ColumnVector ComplexColumnVector::map (d_c_Mapper f) const { const Complex *d = data (); octave_idx_type len = length (); ColumnVector retval (len); double *r = retval.fortran_vec (); for (octave_idx_type i = 0; i < len; i++) r[i] = f (d[i]); return retval; } ComplexColumnVector& ComplexColumnVector::apply (c_c_Mapper f) { Complex *d = fortran_vec (); // Ensures only one reference to my privates! for (octave_idx_type i = 0; i < length (); i++) d[i] = f (d[i]); return *this; } Complex ComplexColumnVector::min (void) const { octave_idx_type len = length (); if (len == 0) return 0.0; Complex res = elem (0); double absres = std::abs (res); for (octave_idx_type i = 1; i < len; i++) if (std::abs (elem (i)) < absres) { res = elem (i); absres = std::abs (res); } return res; } Complex ComplexColumnVector::max (void) const { octave_idx_type len = length (); if (len == 0) return 0.0; Complex res = elem (0); double absres = std::abs (res); for (octave_idx_type i = 1; i < len; i++) if (std::abs (elem (i)) > absres) { res = elem (i); absres = std::abs (res); } return res; } // i/o std::ostream& operator << (std::ostream& os, const ComplexColumnVector& a) { // int field_width = os.precision () + 7; for (octave_idx_type i = 0; i < a.length (); i++) os << /* setw (field_width) << */ a.elem (i) << "\n"; return os; } std::istream& operator >> (std::istream& is, ComplexColumnVector& a) { octave_idx_type len = a.length(); if (len < 1) is.clear (std::ios::badbit); else { double tmp; for (octave_idx_type i = 0; i < len; i++) { is >> tmp; if (is) a.elem (i) = tmp; else break; } } return is; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */